VARIATIONAL ANALYSIS OF PREFERENCE RELATIONS AND UTILITY

Terry Rockafellar University of Washington, Seattle

International Conference on Challenges and Advances in Modern Variational Analysis (in honor of Jean-Paul Penot 80th) University of Limoges, France March 14–15, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Overview of Preferences and Utility

Vectors of goods: $x = (x_1, ..., x_g), y = (y_1, ..., y_g)$: in R_{++}^g Preferences: $x \leq y$ $(x \sim y \text{ if also } y \leq x, \text{ otherwise } x < y)$

Initial axioms used by economists

(A1) completeness: $\forall x, y$, either $x \leq y$ or $y \leq x$ (A2) transitivity: $x \leq y, y \leq z \implies x \leq z$ (A3) closedness: $R := \{(x, y) | x \leq y\}$ is closed in $R_{++}^g \times R_{++}^g$ (A4) monotonicity: $x \prec y$ if $x \leq y, x \neq y$

Utility representation: $u : \mathbb{R}^g_{++} \to \mathbb{R}$ with $u(x) \le u(y) \Leftrightarrow x \le y$

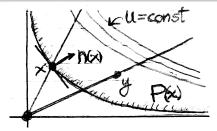
- $(A1)+(A2) \Rightarrow$ existence, $(A3) \Rightarrow$ continuous
- (A4) \Rightarrow strictly increasing in all variables

Challenge: securing also properties of smoothness and concavity

Quasi-Concavity and Quasi-Smoothness

Further axioms used by economists

(A5) the sets
$$P(x) = \{y \mid x \leq y\}$$
 are convex
 $P : \mathbb{R}^{g}_{++} \Rightarrow \mathbb{R}^{g}_{++}$ is convex-set-valued, gph $P = \mathbb{R}$
(A6) only one hyperplane supports $P(x)$ at x
 $N_{P(x)}(x) = \{-\lambda n(x) \mid \lambda \geq 0\}$ for unique "unit" $n(x)$



 $\operatorname{int} P(x) = \left\{ y \, \big| \, x \prec y \right\}$

$$P(x) = P(y) \Longleftrightarrow x \sim y$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Basic utility: for any $e \in R_{++}^g$, $u_e(x) :=$ unique t with $te \sim x$

The Key to Smooth Utility Representations

Scaling structure: $\Theta_{x,y} = \{(r,s) \mid rx \sim sy\}$ for any $x, y \in R^g_{++}$ $\Theta_{x,y} = \operatorname{gph} \theta_{x,y}$ for a function $\theta_{x,y}$ from $(0,\infty)$ onto $(0,\infty)$ $\theta_{x,y}$ is one-to-one, continuous, increasing, and intrinsic

Theorem: first-order smoothness, " \mathcal{C}^1 preferences"

 \exists utility function $u \in C^1$ with $\nabla u(x) \neq 0$ always

- \iff the basic utility functions u_e have this character
- $\iff \text{ the scaling functions } \theta_{x,y} \text{ have derivatives } \theta'_{x,y}(r)$ that depend continuously on x, y

 $\nabla u_e(x) = \left[\theta'_{e,x}(1)/n(x)\cdot x\right]n(x)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

General utility from basic utility: for any $e \in \mathbb{R}_{++}^g$, u(x) represents the given preference relation $\iff u(x) = \theta(u_e(x))$ for an increasing function θ

Characterizing Higher-Order Smoothness

Recall: -n(x) is the unit normal to P(x) at x **Quasi-smoothness, first-order:** the mapping $x \mapsto n(x)$ is C^0 (this follows from facts about convergencing convex sets) \implies the boundary of P(x) is a C^1 manifold **Quasi-smoothness, second-order:** the mapping $x \mapsto n(x)$ is C^1 \implies the boundary of P(x) is a C^2 manifold

Theorem: second-order smoothness, " \mathcal{C}^2 preferences"

- \exists utility function $u \in C^2$ with $\nabla u(x) \neq 0$ always
 - \iff the basic utility functions u_e have this character
 - \iff (a) second-order quasi-smoothness holds, and
 - (b) the scaling functions $\theta_{x,y}$ have derivatives $\theta'_{x,y}(r)$ that depend continuously differentiably on x, y

(this can proceed to higher and higher orders)

Graphical Smoothness of Preferences

Recall:
$$R = \operatorname{gph} P = \{(x, y) \mid x \leq y\}$$
 closed set $\subset R^g_{++} \times R^g_{++}$
bdry $R = \{(x, y) \mid x \sim y\}$, int $R = \{(x, y) \mid x \prec y\}$

R is epi-Lipschitzian, hence $\operatorname{bdry} R$ is a Lipschitzian manifold

Definition of graphical smoothness:first-order:bdry R is a C^1 manifoldsecond-order:bdry R is a C^2 manifold

Theorem: utility smoothness versus graphical smoothness

The previous smoothness properties correspond to these properties **plus:** the mapping $P : x \mapsto P(x)$ is sub-Lipschitz continuous

 $\forall \rho, \exists \kappa: \quad P(x') \cap \rho B \subset P(x) + \kappa | x' - x | B \quad \text{ for } x, x' \in \rho B$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへぐ

Existence of Concave Utility Representations

Strong convexity of preferences: sets P(x) "reliably curved" locally around any \bar{x} , there exists $\sigma > 0$ such that $x, x' \sim \bar{x} \implies [n(x') - n(x)] \cdot [x' - x] \le -\sigma |x' - x|^2$

Theorem: guaranteed concavity of utility

For C^2 preferences and any compact convex set $C \subset R_{++}^g$, \exists representation by a C^2 utility function u(x) that is <u>concave</u> relative to C and moreover minimally so

Minimally concave utility representation: u(x) on C such that all others are of the form $\theta(u(x))$ for a <u>concave</u> function θ

minimally concave utility is unique up to affine rescaling! thus unique up to a choice of units, like Celsius/Fahrenheit R. T. Rockafellar (2022), "Variational analysis of preference relations and their utility representation," *Pure and Applied Functional Analysis*, accepted. (issue in honor of Roger Wets 85th)

[2] J. Deride, A. Jofré, R. T. Rockafellar (2023), "Reaching an equilibrium of prices and holdings through direct buying and selling," *Economic Theory*, submitted.

downloads: sites.math.washington.edu/~rtr/mypage.html