CONSTRUCTION OF OPERATORSWITH WILD DYNAMICS.

Robert Deville, E. StrouseUniversity of Bordeaux.Non linear phenomena with only linear operators.

Wild dynamics with 3 orthogonal projections.

Let H be an infinite-dimensional Hilbert space.

Theorem (Kopecka-Muller-Paszkiewicz). There exist three orthogonal projections P_1 , P_2 , P_3 onto closed subspaces of H such that for every $z_0\in H\backslash\{0\}$, there exist $k_1,~k_2,\dots\in\{1,2,3\}$ so that the sequence of iterates defined by $z_{n+1}=P_{k_n}z_n$ does n n does not converge in norm.

Hypercyclic operators.

Let $(X, \|\cdot\|_X)$ be a Banach space and $T \in \mathcal{L}(X).$

 \bullet Set of hypercyclic vectors of T : $HC(T) :=\{x\in X; \text{ the sequence } (T^{n}x) \text{ is dense in } X\,\}$

 T is hypercyclic if $HC(T)\neq\emptyset.$ In this case, $HC(T)$ is dense.

Theorem : For every separable Banach space X such that $dim(X)=\infty$, there exists $T\in \mathcal{L}(X)$ such that T is hypercyclic.

Moreover, we can construct T so that $I-T$ is compact.

Read : There exists $T \in \mathcal{L}(\ell^1)$ $^1(\mathbb{N}))$ such that $HC(T)=\ell^1$ $\mathsf{L}(\mathbb{N})\backslash\{0\}.$

Universality of hypercyclic operators.

Theorem (Feldmann) :

There exists a separable Hilbert space H and there exists an hypercyclic operator $T\in\mathcal{L}(H)$ with the following property :

for every compact metric space $K,$ for every continuous function $f : K \to K$,

there exists a compact subset L of H stable by T and an homeomorphism $\Phi:K\to L$ such that

 $\mathsf{\Phi}\circ f=T\circ\mathsf{\Phi}.$

A theorem of Hajek, Smith and Augé.

 \bullet $U(T)=\{x\in X;$ the sequence $(\|T^nx\|)$ is unbounded.

Uniform boundedness principle. $U(T)$ is either empty or residual.

 \bullet $A(T)=\{x\in X;$ the sequence $(\|T^nx\|)$ tends to $+\infty\}.$

Is $A(T)$ either empty or dense?

- Answer : no. Hajek and Smith constructed counterexamples in every separable Banach space with symmetric basis.
- (Muller) If X is real and $+\infty$ $n{=}\mathbb{1}$ 1 $\frac{1}{\|T^n\|} < +\infty$ then $A(T)$ is dense

A theorem of Hajek, Smith and Augé.

 \bullet $U(T)=\{x\in X;$ the sequence $(\|T^nx\|)$ is unbounded.

Uniform boundedness principle. $U(T)$ is either empty or residual.

- \bullet $A(T)=\{x\in X;\text{ the sequence }(\Vert T^{n}% (\theta)\Vert_{2\mathbb{Z}_{+}^{2}}^{2}:\theta)\ |\ \theta\in\mathbb{R}^{n}\times\mathbb{Z}_{+}^{2}$ $^{n}x\Vert)$ tends to $+\infty\}.$
- $\sqrt{ }$ • $R(T) = \{x \in X;$ lim inf $||T^n x - x|| = 0\}$ (recurrent points of T).

Theorem (J. M. Augé) : For every separable Banach space X with $dim(X) = \infty$, there exists $T \in \mathcal{L}(X)$ such that

- • $\big\{R(T),A(T)\big\}$ is a partition of X ,
- both $R(T)$ and $A(T)$ have non empty interior.

Moreover, we can construct T so that $I-T$ is compact.

Recurrent points.

- $A(T) = \{x \in X;$ the sequence $(||T^n x||)$ tends to $+\infty\}$.
• $B(T) = \{x \in X:$ $0 <$ lim inf $||T^n x x|| < +\infty\}$
- $B(T) = \{x \in X; \; \; \; 0 < \liminf \|T^n x x\| < +\infty\}$
- $R(T) = \{x \in X;$ lim inf $||T^n x-x|| = 0\}$ (recurrent points of T).

Theorem (Augé): For every separable Banach space X with $dim(X) = \infty$, there exists $T \in \mathcal{L}(X)$ such that

- • $\bullet\; \Big\{R(T), A(T)\Big\}$ is a partition of $X,$
- both $R(T)$ and $A(T)$ have non empty interior.

Theorem (Deville - Strouse) : For every separable Banach space X with $dim(X) = \infty$, there exists $T \in \mathcal{L}(X)$ such that

- • $\bullet\; \Big\{R(T), B(T)\Big\}$ is a partition of $X,$
- both $R(T)$ and $B(T)$ have non empty interior.

The sum of two operators.

Let D,R be two operators on X satifying :

$$
R \circ D = R \qquad R^2 = 0
$$

Denote $T=D+R$. Then for each $n\geq 1$,

$$
T^n = D^n + (I + D + \dots + D^{n-1}) \circ R.
$$

Example.

 $D, R \in \mathcal{L}$ ($\mathbb C$ ²), *D* with matrix $\left(\begin{array}{cc} 1 & 0 \\ 0 & \lambda \end{array}\right)$ 0λ $\Big)$ where λ $=e^{i\pi/m}$, R with matrix $\Bigg(\begin{array}{c} 0 \ 0 \end{array}$ $r\,$ 0 0 $\bigg)$ The matrix of $\, T \,$ $=D+R$ is $\begin{pmatrix} 1 \ 0 \end{pmatrix}$ $r\,$ 0λ)
)

The operator T on \mathbb{C}^2 .

$$
T \in \mathcal{L}(\mathbb{C}^2) \text{ with matrix } \begin{pmatrix} 1 & r \\ 0 & \lambda \end{pmatrix}
$$

Matrix of T^n $\begin{pmatrix} 1 & r\lambda_n \\ 0 & \lambda^n \end{pmatrix}$ where $\lambda_n = \sum_{k=0}^{n-1} \lambda^k$.

$$
\text{If } \lambda = e^{i\pi/m} \quad \text{ and } \quad \frac{1}{m} \ll r \ll 1, \quad \text{ then }
$$

- \bullet $\|T Id\|$ is small
- $T^{2m} = Id$
- \bullet $\|T^m\|$ is of order rm (hence large),

because
$$
\frac{2}{\pi}n \le |\lambda_n| \le n
$$
 if $n \le m$.

The sum of two operators.

The operator T of the theorem of Augé will be $T=D+R$, where D,R satify :

$$
R \circ D = R \qquad R^2 = 0
$$

So, for each $n\geq 1$,

$$
T^n = D^n + (I + D + \dots + D^{n-1}) \circ R.
$$

If X has a Schauder basis
$$
(e_n)
$$
,
\n
$$
P: X \to \mathbb{C}^2 \qquad x = \sum_{n=1}^{+\infty} x_n e_n \qquad Px = (x_1, x_2)
$$
\nLet $F = \{(x_1, x_2) \in \mathbb{C}^2; |x_1| \ge |x_2|\}.$
\n
$$
A(T) = \{x \in X; ||T^n x|| \to \infty\} = \{x \in X; Px \notin F\}
$$
\n
$$
R(T) = \{x \in X; \text{ lim inf } ||T^n x - x|| = 0\} = \{x \in X; Px \in F\}
$$

Wild sequences of linear forms on \mathbb{C}^2 .

Proposition : Let $F\subset\mathbb{C}^2.$

Assume F is closed and union of linear subspaces. There exists linear forms $f_k: \mathbb{C}^2$: $\overline{z} \rightarrow \mathbb{C}$ such that :

- for all $x \in F$, lim inf $|f_k(x)| = 0$,
- for all $x \notin F$, $\lim |f_k(x)| = +\infty$.

Example : $F=$ F and $\mathbb{C}^2\backslash F$ have non empty interior. $\{(z_1, z_2) \in \mathbb{C}^2; |z_1| \geq |z_2|$ I $\left| \right\rbrace$

Let $\mathbb{D}:=\{z\in\mathbb{C};\ |z|<1\}.$ There exists $(a_k)\subset\mathbb{D}$ such that :

 $\forall z\in\mathbb{D}\qquad \exists p_k\leq k,\; p_k\to\infty \quad \textsf{such that} \quad \quad |z|$ a_p $|k_k|\leq \frac{\alpha}{\sqrt{k}}.$

 $f_k(z_1,z_2)=k^{1/4}(z_2-a_kz_1).$ Note $\|f_k\|=O(k^{1/4}).$

Wild sequences of linear forms on \mathbb{C}^2 .

Proposition : Let $F\subset\mathbb{C}^2.$

Assume F is closed and union of linear subspaces. There exists linear forms $f_k: \mathbb{C}^2$: $\overline{z} \rightarrow \mathbb{C}$ such that :

- for all $x \in F$, lim inf $|f_k(x)| = 0$,
- for all $x \notin F$, $\lim |f_k(x)| = +\infty$.

Example : $F=$ F and $\mathbb{C}^2\backslash F$ have non empty interior. $\{(z_1, z_2) \in \mathbb{C}^2; |z_1| \geq |z_2| \}$

Let $\mathbb{D}:=\{z\in\mathbb{C};\,|z|<1\}.$ There exists $(a_k)\subset\mathbb{D}$ such that :

$$
\forall z \in \mathbb{D} \qquad \exists p_k \le k, \ p_k \to \infty \quad \text{such that} \qquad |z - a_{p_k}| \le \frac{\alpha}{\sqrt{k}}.
$$

 $f_k(z_1, z_2) = k^{1/2}$ $^4(z_2-a_kz_1)$. Note $\|f_k\|=O(k^{1/4})$.

The diagonal operator D .

If
$$
m_k = k!
$$
, then $m_k | m_{k+1}$ and $m_p \sum_{k > p} \frac{||f_k||}{m_k} \to 0$ as $p \to \infty$.
\n $\lambda_1 = \lambda_2 = 1$ and for $k \ge 3$, $\lambda_k = e^{i\pi/m_{k+1}}$.

$$
x = \sum_{n=1}^{+\infty} x_n e_n \qquad Dx = \sum_{n=1}^{+\infty} \lambda_n x_n e_n
$$

where $\left(e_{n}\right)$ is a Schauder basis of $X.$

If X has no Schauder basis, work with a Markushevic basis.

The diagonal operator D .

If $m \$ $\,$ = $k!$, then $m \$ $\,$ $\left|m\right|$ $_{k+1}$ and m $p\sum_{k>p}$ $|| f_k$ $\overline{\mathbf{r}}$ $m_{\pmb{k}}$ $\rightarrow 0$ as $p \rightarrow \infty$. $\lambda_1 = \lambda_2 = 1$ and for $k \geq 3$, $\lambda_k = e^{i\pi/m_{k+1}}$.

$$
x = \sum_{n=1}^{+\infty} x_n e_n \qquad Dx = \sum_{n=1}^{+\infty} \lambda_n x_n e_n
$$

• D is bounded $D-I$ compact

• for all
$$
x \in X
$$
, $\lim_{n} D^{2m_n} x = x$, $\lambda_k^{2m_n} = 1$ if $n > k$

The operator R .

$$
P: X \to \mathbb{C}^2 \qquad x = \sum_{n=1}^{+\infty} x_n e_n \qquad Px = (x_1, x_2)
$$

$$
Rx = \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k \qquad R \text{ is compact}
$$

The operator R .

$$
P: X \to \mathbb{C}^2 \qquad x = \sum_{n=1}^{+\infty} x_n e_n \qquad Px = (x_1, x_2)
$$

$$
Rx = \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k \qquad R \text{ is compact}
$$

It is easy to check that $R^2 = 0$ $R \circ D = R$.

Therefore, if
$$
T = D + R
$$
,
\n
$$
T^n x = D^n x + (I + D + \dots + D^{n-1})(Rx)
$$

The operator R .

$$
P: X \to \mathbb{C}^2 \quad x = \sum_{n=1}^{+\infty} x_n e_n \qquad Px = (x_1, x_2)
$$

$$
Rx = \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k \qquad R \text{ is compact}
$$
It is easy to check that $R^2 = 0 \qquad R \circ D = R$.
Therefore, if $T = D + R$,

$$
T^n x = D^n x + (I + D + \dots + D^{n-1})(Rx)
$$

•
$$
(I + D + \dots + D^{n-1})e_k = \lambda_{k,n}e_k = \left(\sum_{\ell=0}^{n-1} \lambda_k^{\ell}\right) e_k.
$$

$$
\lambda_{k,2m_p} = 0 \qquad \qquad |\lambda_{k,n}| \ge \frac{2}{\pi}n \qquad \qquad |\lambda_{k,n}| \le n
$$

if $n \le m_k$ for all n

$$
P: X \to \mathbb{C}^2 \qquad x = \sum_{n=1}^{+\infty} x_n e_n \qquad Px = (x_1, x_2)
$$

$$
Tx = Dx + Rx = \sum_{k=1}^{+\infty} \lambda_k x_k e_k + \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k
$$

•
$$
T - I = (D - I) + R
$$
 is compact,

•
$$
T^{n}x = D^{n}x + \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_{k}(Px)}{m_{k}} e_{k} \text{ where } \lambda_{k,n} = \sum_{\ell=0}^{n-1} \lambda_{k}^{\ell}
$$

$$
A(T) = \left\{ x \in X; ||T^{n}x|| \to \infty \right\} = \left\{ x \in X; Px \notin F \right\}
$$

$$
R(T) = \left\{ x \in X; \text{ lim inf } ||T^{n}x - x|| = 0 \right\} = \left\{ x \in X; Px \in F \right\}
$$

$$
P: X \to \mathbb{C}^2 \qquad x = \sum_{n=1}^{+\infty} x_n e_n \qquad Px = (x_1, x_2)
$$

$$
Tx = Dx + Rx = \sum_{k=1}^{+\infty} \lambda_k x_k e_k + \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k
$$

•
$$
T - I = (D - I) + R
$$
 is compact,

•
$$
T^{n}x = D^{n}x + \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_{k}(Px)}{m_{k}} e_{k} \text{ where } \lambda_{k,n} = \sum_{\ell=0}^{n-1} \lambda_{k}^{\ell}
$$

$$
A(T) = \left\{ x \in X; ||T^{n}x|| \to \infty \right\} = \left\{ x \in X; Px \notin F \right\}
$$

$$
R(T) = \left\{ x \in X; \text{ lim inf } ||T^{n}x - x|| = 0 \right\} = \left\{ x \in X; Px \in F \right\}
$$

$$
Tx = Dx + \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k \qquad Px = (x_1, x_2)
$$

$$
T^n x = D^n x + \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_k(Px)}{m_k} e_k \qquad \lambda_{k,n} = \sum_{\ell=0}^{n-1} \lambda_k^{\ell}
$$

Enough to show :

 $Px \notin F \Rightarrow ||T^n x|| \rightarrow +\infty$ and $Px \in F \Rightarrow \liminf ||T^n x-x|| = 0$

If $Px \notin F$ and $m_k \le n \le m_{k+1}$, then $|\lambda_{k,n}| \ge \frac{2}{\pi}n \ge \frac{2}{\pi}m_k$, so $\left|\frac{\lambda_{k,n} f_k(P x)}{m_k}\right| \geq \frac{2}{\pi} |f_k(P x)| \to \infty$ as $k \to \infty$. Hence $\|T^n x\| \to +\infty$

$$
Tx = Dx + \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k \qquad Px = (x_1, x_2)
$$

$$
T^n x = D^n x + \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_k(Px)}{m_k} e_k \qquad \lambda_{k,n} = \sum_{\ell=0}^{n-1} \lambda_k^{\ell}
$$

Enough to show :

 $Px \notin F \Rightarrow ||T^n x|| \rightarrow +\infty$ and $Px \in F \Rightarrow \liminf ||T^n x-x|| = 0$

If $Px \notin F$ and $m_k \leq n \leq m_{k+1}$, then $|\lambda_{k,n}| \geq \frac{2}{\pi}n \geq \frac{2}{\pi}m_k$, so $\left|\frac{\lambda_{k,n} f_k(P x)}{m_k}\right| \geq \frac{2}{\pi} |f_k(P x)| \to \infty$,as $k \to \infty$. Hence $\|T^n x\| \to +\infty$

$$
T^n x = D^n x + R_n x \quad \text{where} \quad R_n x = \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_k(Px)}{m_k} e_k
$$

lim inf $\|T^nx - x\| \leq$ lim inf $\|T^{2m p}x - x\| \leq$ lim inf $\|R_{2m_{p}}x\|$ because $T^{2m_p}x-x=\left(D^{2m_p}x-x\right)+R_{2m_p}x$ and $\|D^{2m_p}x-x\|\rightarrow 0.$

$$
\begin{aligned} \text{If } k < p, \quad \lambda_{k, 2m_p} = 0. \\ \text{If } k &= p, \quad \left| \frac{\lambda_{p, 2m_p} f_p(Px)}{m_p} \right| \le 2 |f_p(Px)|. \\ \text{If } k > p, \quad \left| \frac{\lambda_{k, 2m_p} f_k(Px)}{m_k} \right| \le \frac{2m_p}{m_k} \|f_k(Px)\| \le 2m_p \frac{\|f_k\|}{m_k} \cdot \|Px\| \end{aligned}
$$

 ${\sf So} \hspace{0.5cm} \text{lim inf} \, \|R_{2m_p}x\| \leq 2 \, \text{lim inf} \, |f_p(P x)|.$

Finally, if $Px \in F$, then lim inf $\|T^n x - x\| = 0$.

The operator U .

Let $H = \bigoplus_2(\mathbb{C}^{2m_k},\|\cdot\|_\infty)$ $U \in \mathcal{L}(H)$ restricted to \mathbb{C}^{2m_k} satisfies $U(e_n) = \alpha_k e_{n+1}$ whenever $1 \leq n < 2m_k$ where $\alpha_k^{2m_k-1} = k$ and $U(e_{2m_k}) = e_1/k.$ For all $x\in X, \hspace{1cm} \lim_{k}$ (recall, we also have lim $S^{2m_k}x = x$). $U^{2m_k}x$ $x = x$ and U non invertible.

Theorem (S. Tapia)If $T' \in \mathcal{L}(X \times H)$ is defined by $T'(x, y) = (Tx, Uy)$, then

- • $\bullet\; \Big\{R(T'),A(T')\Big\}$ is a partition of $X\times H,$
- $R(T')=R(T)\times H$ and $A(T')=A(T)\times H$ have non empty interior.
- \bullet T' is not invertible.