CONSTRUCTION OF OPERATORS WITH WILD DYNAMICS.

Robert Deville, E. Strouse University of Bordeaux.

Non linear phenomena with only linear operators.

Wild dynamics with 3 orthogonal projections.

Let H be an infinite-dimensional Hilbert space.

Theorem (Kopecka-Muller-Paszkiewicz). There exist three orthogonal projections P_1 , P_2 , P_3 onto closed subspaces of H such that for every $z_0 \in H \setminus \{0\}$, there exist k_1 , $k_2, \dots \in \{1, 2, 3\}$ so that the sequence of iterates defined by $z_{n+1} = P_{k_n} z_n$ does not converge in norm.

Hypercyclic operators.

Let $(X, \|\cdot\|_X)$ be a Banach space and $T \in \mathcal{L}(X)$.

• Set of hypercyclic vectors of T: $HC(T) := \{x \in X; \text{ the sequence } (T^n x) \text{ is dense in } X \}$

T is hypercyclic if $HC(T) \neq \emptyset$. In this case, HC(T) is dense.

Theorem: For every separable Banach space X such that $dim(X) = \infty$, there exists $T \in \mathcal{L}(X)$ such that T is hypercyclic.

Moreover, we can construct T so that I-T is compact.

Read : There exists $T \in \mathcal{L}(\ell^1(\mathbb{N}))$ such that $HC(T) = \ell^1(\mathbb{N}) \setminus \{0\}$.

Universality of hypercyclic operators.

Theorem (Feldmann):

There exists a separable Hilbert space H and there exists an hypercyclic operator $T \in \mathcal{L}(H)$ with the following property :

for every compact metric space K, for every continuous function $f: K \to K$,

there exists a compact subset L of H stable by T and an homeomorphism $\Phi: K \to L$ such that

$$\Phi \circ f = T \circ \Phi$$
.

A theorem of Hajek, Smith and Augé.

• $U(T) = \{x \in X; \text{ the sequence } (||T^n x||) \text{ is unbounded.}$

Uniform boundedness principle. U(T) is either empty or residual.

- $A(T) = \{x \in X; \text{ the sequence } (||T^nx||) \text{ tends to } +\infty\}.$ Is A(T) either empty or dense?
- Answer: no. Hajek and Smith constructed counterexamples in every separable Banach space with symmetric basis.
- (Muller) If X is real and $\sum\limits_{n=1}^{+\infty}\frac{1}{\|T^n\|}<+\infty$ then A(T) is dense

A theorem of Hajek, Smith and Augé.

• $U(T) = \{x \in X; \text{ the sequence } (||T^n x||) \text{ is unbounded.}$

Uniform boundedness principle. U(T) is either empty or residual.

- $A(T) = \{x \in X; \text{ the sequence } (||T^n x||) \text{ tends to } +\infty\}.$
- $R(T) = \{x \in X; \text{ lim inf } ||T^n x x|| = 0\}$ (recurrent points of T).

Theorem (J. M. Augé): For every separable Banach space X with $dim(X) = \infty$, there exists $T \in \mathcal{L}(X)$ such that

- $\{R(T), A(T)\}$ is a partition of X,
- both R(T) and A(T) have non empty interior.

Moreover, we can construct T so that I-T is compact.

Recurrent points.

- $A(T) = \{x \in X; \text{ the sequence } (||T^n x||) \text{ tends to } +\infty\}.$
- $B(T) = \{x \in X; 0 < \liminf ||T^n x x|| < +\infty \}$
- $R(T) = \{x \in X; \text{ lim inf } ||T^n x x|| = 0\}$ (recurrent points of T).

Theorem (Augé): For every separable Banach space X with $dim(X) = \infty$, there exists $T \in \mathcal{L}(X)$ such that

- $\{R(T), A(T)\}$ is a partition of X,
- both R(T) and A(T) have non empty interior.

Theorem (Deville - Strouse): For every separable Banach space X with $dim(X) = \infty$, there exists $T \in \mathcal{L}(X)$ such that

- $\{R(T), B(T)\}$ is a partition of X,
- both R(T) and B(T) have non empty interior.

The sum of two operators.

Let D, R be two operators on X satisfying :

$$R \circ D = R$$
 $R^2 = 0$

Denote T = D + R. Then for each $n \ge 1$,

$$T^n = D^n + (I + D + \dots + D^{n-1}) \circ R.$$

Example.

$$D,R\in\mathcal{L}(\mathbb{C}^2)$$
, D with matrix $\left(egin{array}{cc} 1&0\\0&\lambda\end{array}\right)$ where $\lambda=e^{i\pi/m}$,

R with matrix
$$\begin{pmatrix} 0 & r \\ 0 & 0 \end{pmatrix}$$

The matrix of
$$T = D + R$$
 is $\begin{pmatrix} 1 & r \\ 0 & \lambda \end{pmatrix}$

The operator T on \mathbb{C}^2 .

$$T\in\mathcal{L}(\mathbb{C}^2)$$
 with matrix $\left(egin{array}{cc} 1 & r \ 0 & \lambda \end{array}
ight)$ Matrix of T^n $\left(egin{array}{cc} 1 & r\lambda_n \ 0 & \lambda^n \end{array}
ight)$ where $\lambda_n=\sum\limits_{k=0}^{n-1}\lambda^k.$

If
$$\lambda = e^{i\pi/m}$$
 and $\frac{1}{m} \ll r \ll 1$, then

- ||T Id|| is small
- $T^{2m} = Id$
- $||T^m||$ is of order rm (hence large),

because
$$\frac{2}{\pi}n \leq |\lambda_n| \leq n$$
 if $n \leq m$.

The sum of two operators.

The operator T of the theorem of Augé will be T=D+R, where D,R satisfy :

$$R \circ D = R \qquad R^2 = 0$$

So, for each $n \geq 1$,

$$T^n = D^n + (I + D + \dots + D^{n-1}) \circ R.$$

If X has a Schauder basis (e_n) ,

$$P: X \to \mathbb{C}^2$$
 $x = \sum_{n=1}^{+\infty} x_n e_n$ $Px = (x_1, x_2)$

Let
$$F = \{(x_1, x_2) \in \mathbb{C}^2; |x_1| \ge |x_2| \}.$$

$$A(T) = \left\{ x \in X; \|T^n x\| \to \infty \right\} = \left\{ x \in X; Px \notin F \right\}$$

$$R(T) = \{x \in X; \text{ lim inf } ||T^n x - x|| = 0\} = \{x \in X; Px \in F\}$$

Wild sequences of linear forms on \mathbb{C}^2 .

Proposition : Let $F \subset \mathbb{C}^2$.

Assume F is closed and union of linear subspaces.

There exists linear forms $f_k:\mathbb{C}^2\to\mathbb{C}$ such that :

- for all $x \in F$, $\liminf |f_k(x)| = 0$,
- for all $x \notin F$, $\lim |f_k(x)| = +\infty$.

Example : $F = \{(z_1, z_2) \in \mathbb{C}^2; |z_1| \ge |z_2|\}$ F and $\mathbb{C}^2 \setminus F$ have non empty interior.

Let $\mathbb{D}:=\{z\in\mathbb{C};\ |z|<1\}$. There exists $(a_k)\subset\mathbb{D}$ such that :

$$\forall z \in \mathbb{D} \qquad \exists p_k \leq k \text{, } p_k \to \infty \quad \text{such that} \qquad |z - a_{p_k}| \leq \frac{\alpha}{\sqrt{k}}.$$

$$f_k(z_1, z_2) = k^{1/4}(z_2 - a_k z_1)$$
. Note $||f_k|| = O(k^{1/4})$.

Wild sequences of linear forms on \mathbb{C}^2 .

Proposition : Let $F \subset \mathbb{C}^2$.

Assume F is closed and union of linear subspaces.

There exists linear forms $f_k:\mathbb{C}^2\to\mathbb{C}$ such that :

- for all $x \in F$, $\liminf |f_k(x)| = 0$,
- for all $x \notin F$, $\lim |f_k(x)| = +\infty$.

Example : $F = \{(z_1, z_2) \in \mathbb{C}^2; |z_1| \ge |z_2|\}$ F and $\mathbb{C}^2 \setminus F$ have non empty interior.

Let $\mathbb{D}:=\{z\in\mathbb{C};\,|z|<1\}$. There exists $(a_k)\subset\mathbb{D}$ such that :

$$\forall z \in \mathbb{D} \qquad \exists p_k \leq k \text{, } p_k \to \infty \quad \text{such that} \qquad |z - a_{p_k}| \leq \frac{\alpha}{\sqrt{k}}.$$

$$f_k(z_1, z_2) = k^{1/4}(z_2 - a_k z_1)$$
. Note $||f_k|| = O(k^{1/4})$.

The diagonal operator D.

If $m_k=k!$, then $m_k|m_{k+1}$ and $m_p\sum_{k>p}\frac{\|f_k\|}{m_k}\to 0$ as $p\to\infty$.

$$\lambda_1 = \lambda_2 = 1$$
 and for $k \ge 3$, $\lambda_k = e^{i\pi/m_{k+1}}$.

$$x = \sum_{n=1}^{+\infty} x_n e_n \qquad Dx = \sum_{n=1}^{+\infty} \lambda_n x_n e_n$$

where (e_n) is a Schauder basis of X.

If X has no Schauder basis, work with a Markushevic basis.

The diagonal operator D.

If
$$m_k=k!$$
, then $m_k|m_{k+1}$ and $m_p\sum_{k>p}\frac{\|f_k\|}{m_k}\to 0$ as $p\to\infty$.

$$\lambda_1 = \lambda_2 = 1$$
 and for $k \ge 3$, $\lambda_k = e^{i\pi/m_{k+1}}$.

$$x = \sum_{n=1}^{+\infty} x_n e_n \qquad Dx = \sum_{n=1}^{+\infty} \lambda_n x_n e_n$$

• D is bounded D-I compact

• for all
$$x \in X$$
, $\lim_n D^{2m_n} x = x$, $\lambda_k^{2m_n} = 1$ if $n > k$

The operator R.

$$P: X \to \mathbb{C}^2$$
 $x = \sum_{n=1}^{+\infty} x_n e_n$ $Px = (x_1, x_2)$
$$Rx = \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k$$
 $R \text{ is compact}$

The operator R.

$$P: X \to \mathbb{C}^2$$
 $x = \sum_{n=1}^{+\infty} x_n e_n$ $Px = (x_1, x_2)$
$$Rx = \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k$$
 R is compact

It is easy to check that $R^2 = 0$ $R \circ D = R$.

Therefore, if
$$T = D + R$$
,
$$T^n x = D^n x + (I + D + \dots + D^{n-1})(Rx)$$

The operator R.

$$P: X \to \mathbb{C}^2$$
 $x = \sum_{n=1}^{+\infty} x_n e_n$ $Px = (x_1, x_2)$
$$Rx = \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k$$
 R is compact

It is easy to check that $R^2 = 0$ $R \circ D = R$.

Therefore, if
$$T = D + R$$
,
$$T^n x = D^n x + (I + D + \dots + D^{n-1})(Rx)$$

$$\begin{array}{ccc} \bullet & (I+D+\cdots+D^{n-1})e_k=\lambda_{k,n}e_k={\textstyle \binom{n-1}{\sum}}\lambda_k^\ell \Big)e_k. \\ \\ \lambda_{k,2m_p}=0 & |\lambda_{k,n}|\geq \frac{2}{\pi}n & |\lambda_{k,n}|\leq n \\ \text{if } p\geq k & \text{if } n\leq m_k & \text{for all } n \end{array}$$

$$P: X \to \mathbb{C}^2 \qquad x = \sum_{n=1}^{+\infty} x_n e_n \qquad Px = (x_1, x_2)$$
$$Tx = Dx + Rx = \sum_{k=1}^{+\infty} \lambda_k x_k e_k + \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k$$

- T I = (D I) + R is compact,
- $T^n x = D^n x + \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_k(Px)}{m_k} e_k$ where $\lambda_{k,n} = \sum_{\ell=0}^{n-1} \lambda_k^{\ell}$ $A(T) = \left\{ x \in X; \ \|T^n x\| \to \infty \right\} = \left\{ x \in X; \ Px \notin F \right\}$ $R(T) = \left\{ x \in X; \ \lim\inf\|T^n x x\| = 0 \right\} = \left\{ x \in X; \ Px \in F \right\}$

$$P: X \to \mathbb{C}^2 \qquad x = \sum_{n=1}^{+\infty} x_n e_n \qquad Px = (x_1, x_2)$$
$$Tx = Dx + Rx = \sum_{k=1}^{+\infty} \lambda_k x_k e_k + \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k$$

- T I = (D I) + R is compact,
- $T^n x = D^n x + \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_k(Px)}{m_k} e_k$ where $\lambda_{k,n} = \sum_{\ell=0}^{n-1} \lambda_k^{\ell}$ $A(T) = \left\{ x \in X; \ \|T^n x\| \to \infty \right\} = \left\{ x \in X; \ Px \notin F \right\}$ $R(T) = \left\{ x \in X; \ \lim\inf\|T^n x x\| = 0 \right\} = \left\{ x \in X; \ Px \in F \right\}$

$$Tx = Dx + \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k \qquad Px = (x_1, x_2)$$

$$T^n x = D^n x + \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_k(Px)}{m_k} e_k \qquad \lambda_{k,n} = \sum_{\ell=0}^{n-1} \lambda_k^{\ell}$$

Enough to show:

$$Px \notin F \Rightarrow ||T^n x|| \to +\infty$$
 and $Px \in F \Rightarrow \liminf ||T^n x - x|| = 0$

If
$$Px \notin F$$
 and $m_k \le n \le m_{k+1}$, then $|\lambda_{k,n}| \ge \frac{2}{\pi}n \ge \frac{2}{\pi}m_k$, so

$$\left| \frac{\lambda_{k,n} f_k(Px)}{m_k} \right| \ge \frac{2}{\pi} |f_k(Px)| \to \infty \text{ as } k \to \infty.$$
 Hence $\|T^n x\| \to +\infty$

$$Tx = Dx + \sum_{k=3}^{+\infty} \frac{f_k(Px)}{m_k} e_k \qquad Px = (x_1, x_2)$$

$$T^n x = D^n x + \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_k(Px)}{m_k} e_k \qquad \lambda_{k,n} = \sum_{\ell=0}^{n-1} \lambda_k^{\ell}$$

Enough to show:

$$Px \notin F \Rightarrow ||T^n x|| \to +\infty$$
 and $Px \in F \Rightarrow \liminf ||T^n x - x|| = 0$

If
$$Px \notin F$$
 and $m_k \le n \le m_{k+1}$, then $|\lambda_{k,n}| \ge \frac{2}{\pi}n \ge \frac{2}{\pi}m_k$, so

$$\left| \frac{\lambda_{k,n} f_k(Px)}{m_k} \right| \geq \frac{2}{\pi} |f_k(Px)| \to \infty$$
 ,as $k \to \infty$. Hence $\|T^n x\| \to +\infty$

$$T^n x = D^n x + R_n x$$
 where $R_n x = \sum_{k=3}^{+\infty} \frac{\lambda_{k,n} f_k(Px)}{m_k} e_k$

 $\liminf \|T^n x - x\| \le \liminf \|T^{2m_p} x - x\| \le \liminf \|R_{2m_p} x\|$ because $T^{2m_p} x - x = \left(D^{2m_p} x - x\right) + R_{2m_p} x$ and $\|D^{2m_p} x - x\| \to 0$.

If
$$k < p$$
, $\lambda_{k,2m_p} = 0$.

If
$$k=p$$
, $\left|\frac{\lambda_{p,2m_p}f_p(Px)}{m_p}\right| \leq 2|f_p(Px)|$.

If
$$k > p$$
, $\left| \frac{\lambda_{k,2m_p} f_k(Px)}{m_k} \right| \le \frac{2m_p}{m_k} \|f_k(Px)\| \le 2m_p \frac{\|f_k\|}{m_k} \cdot \|Px\|$

So $\liminf ||R_{2m_p}x|| \leq 2 \liminf |f_p(Px)|$.

Finally, if $Px \in F$, then $\lim \inf ||T^nx - x|| = 0$.

The operator U.

Let $H = \bigoplus_2(\mathbb{C}^{2m_k}, \|\cdot\|_{\infty}) \ U \in \mathcal{L}(H)$ restricted to \mathbb{C}^{2m_k} satisfies

$$U(e_n) = \alpha_k e_{n+1}$$

whenever $1 \le n < 2m_k$ where $\alpha_k^{2m_k-1} = k$ and

$$U(e_{2m_k}) = e_1/k.$$

For all $x \in X$, $\lim_k U^{2m_k} x = x$ and U non invertible. (recall, we also have $\lim_k S^{2m_k} x = x$).

Theorem (S. Tapia)

If $T' \in \mathcal{L}(X \times H)$ is defined by T'(x,y) = (Tx,Uy), then

- $\{R(T'), A(T')\}$ is a partition of $X \times H$,
- $R(T') = R(T) \times H$ and $A(T') = A(T) \times H$ have non empty interior.
- T' is not invertible.