On strong convexity for the understanding and design of (unfolded) algorithms

Nelly Pustelnik

Challenges and advances in modern variational analysis Limoges – March 15th, 2023

Signal processing

Image processing

• Graph processing

Three quantities of interest:

- $z \in \mathbb{R}^{\overline{N}}$: Data/measures.
- $\overline{\mathbf{x}} \in \mathbb{R}^{N}$: True (unknown) parameters.
- $\widehat{\mathbf{x}} \in \mathbb{R}^{N}$: Estimated parameters.

$$z = \mathcal{D}(A\overline{x})$$

$$\downarrow$$

$$\widehat{x}(z; \lambda) \in \operatorname{Argmin}_{x} \varphi(x; z) + \lambda \psi(x)$$

$$\downarrow$$
Sequence $x^{[k+1]} = \Phi x^{[k]}$

$$\downarrow$$

$$\widehat{\lambda} \in \operatorname{Argmin}_{\lambda} \|\overline{x} - \widehat{x}(z; \lambda)\|_{2}^{2}$$

stimated parameters: $\widehat{\mathrm{x}}(\mathrm{z};\overline{\lambda})$

On strong convexity for the understanding and design of algorithms

istimated parameters: $\widehat{\mathbf{x}}(\mathbf{z};\lambda)$

Minimization problem :

$$\widehat{\mathbf{x}} \in \underset{\mathbf{x}}{\operatorname{Argmin}} f(\mathbf{x}) + g(\mathbf{x})$$

→ Design of a recursive sequence of the form

$$(\forall k \in \mathbb{N})$$
 $\mathbf{x}^{[k+1]} = \mathbf{\Phi} \mathbf{x}^{[k]},$

Gradient descent Proximal point algorithm Forward-Backward Peaceman-Rachford Douglas-Rachford $\Phi = \operatorname{Id} - \tau (\nabla f + \nabla g)$ $\Phi = \operatorname{prox}_{\tau(f+g)}$ $\Phi = \operatorname{prox}_{\tau g} (\operatorname{Id} - \tau \nabla f)$ $\Phi = (2 \operatorname{prox}_{\tau g} - \operatorname{Id}) \circ (2 \operatorname{prox}_{\tau f} - \operatorname{Id})$ $\Phi = \operatorname{prox}_{\tau g} (2 \operatorname{prox}_{\tau f} - \operatorname{Id}) + \operatorname{Id} - \operatorname{prox}_{\tau f}$

Minimization problem :

$$\widehat{\mathbf{x}} \in \underset{\mathbf{x}}{\operatorname{Argmin}} f(\mathbf{x}) + h(\mathbf{D}\mathbf{x})$$

- Require the computation of $prox_{h(D\cdot)}$. Few closed form.
- Reformulation in the dual:
- Primal-dual algorithms:

$$\min_{\mathbf{w}\in\mathcal{G}}f^*(-\mathbf{D}^*\mathbf{w})+h^*(\mathbf{w}),$$

$$\min_{\mathbf{x}} f(\mathbf{x}) + \tilde{f}(\mathbf{x}) + h(\mathbf{D}\mathbf{x})$$

 \rightarrow f has a ν -Lipschitz gradient.

Hyperparameters setting: $\tau > 0$, $\gamma > 0$, such that $\frac{1}{\tau} - \gamma \|D\|^2 > \frac{\nu}{2}$ For $k = 0, 1, \dots$ $\begin{bmatrix} w^{[k+1]} = \operatorname{prox}_{\tau \tilde{f}} (w^{[k]} - \tau \nabla f(w^{[k]}) - \tau D^* x^{[k]}) \\ x^{[k+1]} = \operatorname{prox}_{\gamma h^*} (x^{[k]} + \gamma D(2w^{[k+1]} - w^{[k]})) \end{bmatrix}$

Minimization problem :

$$\widehat{\mathbf{x}} \in \underset{\mathbf{x}}{\operatorname{Argmin}} f(\mathbf{x}) + h(\mathbf{D}\mathbf{x})$$

- Require the computation of $\operatorname{prox}_{h(D \cdot)}$. Few closed form.
- Reformulation in the dual:
- Primal-dual algorithms:

$$\min_{\mathbf{w}\in\mathcal{G}}f^*(-\mathbf{D}^*\mathbf{w})+h^*(\mathbf{w}),$$

$$\min_{\mathbf{x}} f(\mathbf{x}) + \tilde{f}(\mathbf{x}) + h(\mathbf{D}\mathbf{x}),$$

 \rightarrow Acceleration when \tilde{f} strongly convex.

Hyperparameters setting: $\tau > 0$, $\gamma > 0$, such that $\frac{1}{\tau} - \gamma ||\mathbf{D}||^2 > \frac{\nu}{2}$ For k = 0, 1, ... $\begin{bmatrix} \mathbf{w}^{[k+1]} = \operatorname{prox}_{\tau \tilde{f}} (\mathbf{w}^{[k]} - \tau \nabla f(\mathbf{w}^{[k]}) - \tau \mathbf{D}^* \mathbf{x}^{[k]}) \\ \mathbf{x}^{[k+1]} = \operatorname{prox}_{\gamma h^*} (\mathbf{x}^{[k]} + \gamma \mathbf{D}(2\mathbf{w}^{[k+1]} - \mathbf{w}^{[k]})) \end{bmatrix}$

→ Minimization problem :

 $\widehat{\mathbf{x}} \in \underset{\mathbf{x}}{\operatorname{Argmin}} f(\mathbf{x}) + g(\mathbf{x})$

- Smooth and strongly convex.
- Focus on (linear) convergence of the iterates, i.e.

$$(\forall k \in \mathbb{N})$$
 $\|\mathbf{x}^{[k]} - \widehat{\mathbf{x}}\| \le r^k \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|.$

Questions:

- Proximal step or gradient step ?
- Design efficiency region diagram ?

Notations: $C_L^{1,1}$ models the class of differentiable functions having a *L*-Lipschitz gradient.

• Gradient descent Suppose that $\tau \in]0, 2L_f^{-1}L_g^{-1}/(L_g^{-1}+L_f^{-1})[$. Then, $\mathrm{Id} - \tau(\nabla g + \nabla f)$ is $r_G(\tau)$ -Lipschitz continuous, where

 $r_{G}(\tau) := \max \{ |1 - \tau \rho|, |1 - \tau (L_{f} + L_{g})| \} \in]0, 1[.$

• Gradient descent Suppose that $\tau \in]0, 2L_f^{-1}L_g^{-1}/(L_g^{-1}+L_f^{-1})[$. Then, $\mathrm{Id} - \tau(\nabla g + \nabla f)$ is $r_G(\tau)$ -Lipschitz continuous, where

$$r_{\mathcal{G}}(\tau) := \max\left\{|1-\tau\rho|, |1-\tau(L_f+L_g)|\right\} \in \left]0, 1\right[.$$

In particular, the minimum is achieved at

$$\tau^* = \frac{2}{\rho + L_f + L_g}$$

and

$$r_G(\tau^*) = \frac{L_f + L_g - \rho}{L_f + L_g + \rho}$$

Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references) In the context of min f + g where $f, g \in \Gamma_0(\mathcal{H}), f \in C_{L_f}^{1,1}(\mathcal{H}), f$ is ρ -strongly convex, and $g \in C_{L_r}^{1,1}(\mathcal{H})$, for some $\rho \in]0, L_f[$, and let $\tau > 0$.

• **FBS** Suppose that $\tau \in]0, 2L_f^{-1}[$. Then $\operatorname{prox}_{\tau g}(\operatorname{Id} - \tau \nabla f)$ is $r_{T_1}(\tau)$ -Lipschitz continuous, where

$$r_{T_1}(\tau) := \max \{ |1 - \tau \rho|, |1 - \tau L_f| \} \in]0, 1[.$$

Theoretical comparisons

Proposition (see [Briceno-Arias, Pustelnik, 2021] for detailed references) In the context of min f + g where $f, g \in \Gamma_0(\mathcal{H}), f \in C_{L_f}^{1,1}(\mathcal{H}), f$ is ρ -strongly convex, and $g \in C_{L_r}^{1,1}(\mathcal{H})$, for some $\rho \in]0, L_f[$, and let $\tau > 0$.

• **FBS** Suppose that $\tau \in]0, 2L_f^{-1}[$. Then $\operatorname{prox}_{\tau g}(\operatorname{Id} - \tau \nabla f)$ is $r_{T_1}(\tau)$ -Lipschitz continuous, where

$$r_{T_1}(\tau) := \max \{ |1 - \tau \rho|, |1 - \tau L_f| \} \in]0, 1[.$$

In particular, the minimum in (1) is achieved at

$$au^* = rac{2}{
ho + L_f}$$
 and $r_{T_1}(au^*) = rac{L_f -
ho}{L_f +
ho}.$

• **FBS** (v2) Suppose that $\tau \in [0, 2L_g^{-1}]$. Then $\operatorname{prox}_{\tau f}(\operatorname{Id} - \tau \nabla g)$ is $r_{T_2}(\tau)$ -Lipschitz continuous, where

$$r_{T_2}(\tau) := rac{1}{1+ au
ho} \in \left]0,1\right[.$$

• **FBS** (v2) Suppose that $\tau \in [0, 2L_g^{-1}]$. Then $\operatorname{prox}_{\tau f}(\operatorname{Id} - \tau \nabla g)$ is $r_{T_2}(\tau)$ -Lipschitz continuous, where

$$r_{T_2}(au) := rac{1}{1+ au
ho} \in \left]0,1\right[.$$

In particular, the minimum is achieved at

$$au^* = 2L_g^{-1}$$
 and $r_{T_2}(\tau^*) = \frac{1}{1 + 2L_g^{-1}\rho}.$

•**PRS** $(2\text{prox}_{\tau g} - \text{Id}) \circ (2\text{prox}_{\tau f} - \text{Id})$ and $(2\text{prox}_{\tau f} - \text{Id}) \circ (2\text{prox}_{\tau g} - \text{Id})$ are $r_R(\tau)$ -Lipschitz continuous, where

$$r_{R}(\tau) = \max\left\{\frac{1-\tau\rho}{1+\tau\rho}, \frac{\tau L_{f}-1}{\tau L_{f}+1}\right\} \in \left]0, 1\right[.$$

•**PRS** $(2\text{prox}_{\tau g} - \text{Id}) \circ (2\text{prox}_{\tau f} - \text{Id})$ and $(2\text{prox}_{\tau f} - \text{Id}) \circ (2\text{prox}_{\tau g} - \text{Id})$ are $r_R(\tau)$ -Lipschitz continuous, where

$$r_R(\tau) = \max\left\{\frac{1-\tau\rho}{1+\tau\rho}, \frac{\tau L_f - 1}{\tau L_f + 1}\right\} \in \left]0, 1\right[.$$

In particular, the minimum is achieved at

$$\tau^* = \sqrt{\frac{1}{\rho L_f}}$$
 and $r_R(\tau^*) = \frac{1 - \sqrt{L_f^{-1}\rho}}{1 + \sqrt{L_f^{-1}\rho}}.$

Proposition (see [Briceño-Arias, Pustelnik, 2021] for detailed references) In the context of min f + g where $f, g \in \Gamma_0(\mathcal{H}), f \in C_{L_f}^{1,1}(\mathcal{H})$ and $g \in C_{L_g}^{1,1}(\mathcal{H})$, suppose that f is ρ -strongly convex, for some $\rho \in]0, L_f[$, and let $\tau > 0$. Then, the following holds:

• DRS $S_{\tau \nabla g, \tau \nabla f}$ and $S_{\tau \nabla f, \tau \nabla g}$ are $r_{S}(\tau)$ -Lipschitz continuous, where

$$r_{S}(\tau) = \min\left\{\frac{1 + r_{R}(\tau)}{2}, \frac{L_{g}^{-1} + \tau^{2}\rho}{L_{g}^{-1} + \tau L_{g}^{-1}\rho + \tau^{2}\rho}\right\} \in \left]0, 1\right[$$

and r_R is defined in p.21.

Proposition (see [Briceño-Arias, Pustelnik, 2021] for detailed references) In the context of min f + g where $f, g \in \Gamma_0(\mathcal{H}), f \in C_{L_f}^{1,1}(\mathcal{H})$ and $g \in C_{L_g}^{1,1}(\mathcal{H})$, suppose that f is ρ -strongly convex, for some $\rho \in]0, L_f[$, and let $\tau > 0$. Then, the following holds:

• DRS $S_{\tau \nabla g, \tau \nabla f}$ and $S_{\tau \nabla f, \tau \nabla g}$ are $r_S(\tau)$ -Lipschitz continuous, where

$$r_{S}(\tau) = \min\left\{\frac{1 + r_{R}(\tau)}{2}, \frac{L_{g}^{-1} + \tau^{2}\rho}{L_{g}^{-1} + \tau L_{g}^{-1}\rho + \tau^{2}\rho}\right\} \in \left]0, 1\right[$$

and r_R is defined in p.21. In particular, the optimal step-size and the minimum in (1) are

$$(\tau^*, r_{\mathcal{S}}(\tau^*)) = \begin{cases} \left(\sqrt{\frac{1}{\rho L_f}}, \frac{1}{1+\sqrt{L_f^{-1}\rho}}\right), & \text{if } L_f \leq 4L_g \\ \left(\sqrt{\frac{1}{\rho L_g}}, \frac{2}{2+\sqrt{L_g^{-1}\rho}}\right), & \text{otherwise.} \end{cases}$$

Theoretical comparisons

Comparison of the convergence rates of EA, FBS, PRS, DRS for two choices of $\alpha = L_f^{-1}$, $\beta = L_g^{-1}$, and ρ . Note that optimization rates are better than cocoercive rates in general.

Proposition [Briceño-Arias, Pustelnik, 2021] Let $(L_g, \rho) \in]0, +\infty[\times]0, 1[$. Then $r_G^*(L_g, \rho) > r_{T_1}^*(\rho) > r_R^*(\rho)$.

→ The linear convergence rate of PRS is always smaller than those of algorithms governed by operators EA (gradient descent) and FBS (forward-backward splitting).

Theoretical comparisons

 $\begin{array}{l} \textbf{Proposition} \; [\textbf{Briceño-Arias, Pustelnik, 2021}] \\ \text{Let} \; (L_g, \rho) \in \;]0, +\infty[\;\times\;]0, 1[\; \text{and} \\ \\ & \eta(L_g) = \frac{1 - \sqrt{1 - 4L_g}}{1 + \sqrt{1 - 4L_{\pi}}} \in \;]0, 1[\; . \end{array}$

- . Then, the following holds:
- Suppose that $L_g < \frac{1}{4}$ and that $\rho \in I(L_g)$, where $I(\beta) = \left[L_g \max\{1/16, \eta(L_g)\}, \frac{L_g}{\eta(L_g)}\right]$. Then

$$r_{T_2}^*(L_g, \rho) \leq \min\{r_S^*(L_g, \rho), r_R^*(\rho)\}.$$

• Suppose that $L_g < \frac{1}{16}$ and that $\rho < \chi(L_g)$, where $\chi(L_g) = \min\left\{\frac{L_g}{16}, 1 - 8L_g(\sqrt{L_g^{-1}} - 2)\right\}$. Then

$$r_{S}^{*}(L_{g},\rho) < \min\{r_{T_{2}}^{*}(L_{g},\rho),r_{R}^{*}(\rho)\}.$$

In any other case, we have

$$r_R^*(\rho) \le \min\{r_{T_2}^*(L_g,\rho), r_S^*(L_g,\rho)\}.$$
 15

Theoretical comparisons

Comparison of the convergence rates of EA, FBS, PRS, DRS for two choices of $\alpha = L_f^{-1}$, $\beta = L_g^{-1}$, and ρ .

Numerical comparisons: Smooth TV1D denoising

First formulation: minimize $\underbrace{\frac{1}{2} \|x - z\|_2^2}_{f(x)} + \underbrace{\chi h(Lx)}_{g(x)}$

 $\rightarrow f$ is $\rho = 1$ strongly convex, $L_f = 1$, and $L_g = \frac{\chi ||L||^2}{\mu}$.

1- **EA:** Use
$$G_{\tau(\nabla g + \nabla f)}$$

2- **FBS:** Use $T_{\tau \nabla f, \tau \nabla g}$

Second formulation:
$$\min_{x \in \mathcal{H}} \underbrace{\frac{1}{2} \|x - z\|_2^2 + \chi h_{\mathbb{I}_1}(\mathcal{L}_{\mathbb{I}_1}x)}_{\tilde{f}(x)} + \underbrace{\chi h_{\mathbb{I}_2}(\mathcal{L}_{\mathbb{I}_2}x)}_{\tilde{g}(x)}$$

 $ightarrow \widetilde{f}$ is ho = 1 strongly convex, $L_{\widetilde{f}} = rac{\mu + \chi \|L_{\mathbb{I}_2}\|^2}{\mu}$ and $L_{\widetilde{g}} = rac{\chi \|L_{\mathbb{I}_1}\|^2}{\mu}$

3- **FBS 2:** Use $T_{\tau \nabla \tilde{g}, \tau \nabla \tilde{f}}$ 4- **FBS 3:** Use $T_{\tau \nabla \tilde{f}, \tau \nabla \tilde{g}}$

5- **PRS:** Use
$$R_{\tau\nabla\widetilde{f},\tau\nabla\widetilde{g}}$$

6- **DRS:** Use
$$S_{\tau \nabla \widetilde{f}, \tau \nabla \widetilde{g}}$$

17

Numerical comparisons: Smooth TV1D denoising

Original/degraded/reconstructed signals

Errors vs Iterations

Numerical comparisons: $\min_{\mathbf{v},\mathbf{h}} \sum_{j} \|\log_2 \mathcal{L}_j - \mathbf{v} - j\mathbf{h}\|_2^2 + \lambda_v \|\mathbf{D}\mathbf{v}\|_1 + \lambda_h \|\mathbf{D}\mathbf{h}\|_1$

Problem solved:

segmentation problem over the range $j \in \{2, 3, 4\}$, $\lambda_v = 0.1$, and $\lambda_h = 200$.

Display: Comparisons of the theoretical upper bound (i.e., $r_{\Phi}(\tau)^k ||x_0 - x_{\infty}||_2$) versus the numerical error (i.e., $||x_k - x_{\infty}||_2$) w.r.t. the number of iterations. Supervised deep image analysis: Strong convexity to design supervised deep proximal architectures

$$z = \mathcal{D}(A\overline{x})$$

$$\downarrow$$

$$\widehat{x}(z; \lambda) \in \operatorname{Argmin}_{x} \varphi(x; z) + \lambda \psi(x)$$

$$\downarrow$$
Sequence $x^{[k+1]} = \mathbf{\Phi} x^{[k]}$

$$\downarrow$$

$$\widehat{\lambda} \in \operatorname{Argmin}_{\lambda} \|\overline{x} - \widehat{x}(z; \lambda)\|_{2}^{2}$$

Estimated parameters: $\widehat{\mathrm{x}}(\mathrm{z};\widehat{\lambda})$

Standard learning and deep learning

Standard learning and deep learning

I.

$$\implies \textbf{Create a database } \mathcal{S} = \left\{ (\overline{\mathbf{x}}_{\ell}, \mathbf{z}_{\ell}) \in \mathbb{R}^{N} \times \mathbb{R}^{\overline{N}} \mid \ell \in \{1, \dots, L\} \right\}$$

 \implies Learn a prediction function d_Θ

$$\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \operatorname{E}(\Theta) := \frac{1}{L} \sum_{\ell=1}^{L} f_1 \big(d_{\Theta}(\mathbf{z}_{\ell}), \overline{\mathbf{x}}_{\ell} \big) + f_2(\Theta)$$

• Linear model: $d_{\Theta}(z_{\ell}) = \Theta^{\top} z_{\ell}$

Standard learning and deep learning

→ Create a database
$$S = \{(\overline{x}_{\ell}, z_{\ell}) \in \mathbb{R}^{N} \times \mathbb{R}^{\overline{N}} \mid \ell \in \{1, \dots, L\}\}$$

 \rightarrow Learn a prediction function d_{Θ}

$$\widehat{\Theta} \in \underset{\Theta}{\operatorname{Argmin}} \operatorname{E}(\Theta) := \frac{1}{L} \sum_{\ell=1}^{L} f_1(d_{\Theta}(\mathbf{z}_{\ell}), \overline{\mathbf{x}}_{\ell}) + f_2(\Theta)$$

• Linear model: $d_{\Theta}(z_{\ell}) = \Theta^{\top} z_{\ell}$

• Non-linear model:

$$d_{\Theta}(\mathbf{z}_{\ell}) = \eta^{[\mathcal{K}]} \left(\mathcal{W}^{[\mathcal{K}]} \dots \eta^{[1]} (\mathcal{W}^{[1]} \mathbf{z}_{\ell} + b^{[1]}) \dots + b^{[\mathcal{K}]} \right)$$

where
$$\Theta = \{W^{[k]}, b^{[k]}\}_{1 \le k \le K}$$
 with $W^{[k]}$ denotes a weight matrix, $b^{[k]}$ is a bias vector,

 $\eta^{[k]}$ is the nonlinear activation function.

Synthesis formulation and proximal gradient descent: LISTA

$$\implies \text{Synthesis formulation:} \quad \lim_{\mathbf{x}} \frac{1}{2} \| \mathbf{H}\mathbf{x} - \mathbf{z} \|_2^2 + \lambda \| \mathbf{x} \|_1 \quad \text{where } \mathbf{H} \in \mathbb{R}^{\overline{N} \times N}$$

→ Forward-backward iterations:

$$\mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau\lambda\|\cdot\|_1} (\mathbf{x}^{[k]} - \tau \mathbf{H}^* (\mathbf{H}\mathbf{x}^{[k]} - \mathbf{z}))$$

→ Layer network:

$$\mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau\lambda \|\cdot\|_{1}} \left(\begin{array}{c} \operatorname{Id} - \tau \operatorname{H}^{*} \operatorname{H} & \mathbf{x}^{[k]} + \\ \eta^{[k]} & \mathbf{W}^{[k]} & \mathbf{b}^{[k]} \end{array} \right)$$
[Gregor | eCup 2010]

23

Standard activation functions

- → Preliminary remarks [Combettes, Pesquet, 2020]
 - Most of activation functions are proximity operator : ReLU, Unimodal sigmoid, Softmax ...
 - For W^[k] bounded linear operators and η_k proximity operators, d_Θ model allows to derive tight Lipschitz bounds for feedforward neural networks in order to evaluate robustness.

→ Minimization problem :
$$\hat{x} = \underset{x}{\arg\min} \frac{1}{2} ||x - z||^2 + ||Dx||_1$$

→ Dual reformulation: $\widehat{w} \in \operatorname{Argmin}_{w \in \mathcal{G}} \frac{1}{2} ||z - D^{\top}w||^2 + \iota_{\|\cdot\|_{\infty} \leq 1}(w)$ • Primal solution: $\widehat{x} = z - D^{\top}\widehat{w}$.

- Solution obtained with proximal gradient based procedure.
- Accelerated schemes (e.g., FISTA).

→ Primal-dual algorithms:

• Resolution with Chambolle-Pock iterations.

For
$$k = 0, 1, ...$$

$$\begin{bmatrix} x^{[k+1]} = \operatorname{prox}_{\frac{\tau}{2} \parallel \cdot -z \parallel_{2}^{2}} (x^{[k]} - \tau D^{\top} w^{[k]}) \\ w^{[k+1]} = \operatorname{prox}_{\iota_{\parallel \cdot \parallel_{\infty} \leq 1}} (w^{[k]} + \gamma D(2x^{[k+1]} - x^{[k]})) \end{bmatrix}$$

• Acceleration when the data-term is strongly convex.

 $\implies \text{Minimization problem: } \widehat{x} = \arg \min_{x} \frac{1}{2} \|x - z\|^2 + \|Dx\|_1$

→ (F)ISTA to solve dual reformulation: Set $w_1 \in \mathbb{R}^{|\mathbb{F}|}$, and $y_1 \in \mathbb{R}^{|\mathbb{F}|}$. For every iteration *k*,

$$\begin{aligned} \mathbf{w}_{k+1} &= \mathrm{prox}_{\iota_{\|\cdot\|_{\infty} \leq 1}} \bigg((\mathrm{Id} - \tau_k \mathrm{DD}^{\top}) \mathbf{y}_k + \tau_k \mathrm{Dz} \bigg) \\ \mathbf{y}_{k+1} &= (1 + \alpha_k) \mathbf{w}_{k+1} - \alpha_k \mathbf{w}_k \end{aligned}$$

➡ Preliminary remarks:

FISTA: (w_k)_{k∈ℕ} converges to ŵ when α_k = t_{k+1}/t_{k+1} and t_{k+1} = k+a-1/a, a > 2, τ < 1/||D||² and F̃(w_k) - F̃(ŵ) ≤ ζ/k².
ISTA: When α_k ≡ 0, (w_k)_{k∈ℕ} converges to ŵ when τ < 2/||D||² for this limit case, and F̃(w_k) - F̃(ŵ) ≤ ζ/k.
(F)ISTA: x̂ = z - D^Tŵ

$$\rightarrow \text{Minimization problem: } \widehat{x} = \underset{x}{\arg\min} \frac{1}{2} ||x - z||^2 + ||Dx||_1$$

→ (F)ISTA to solve dual reformulation: Set $w_1 \in \mathbb{R}^{|\mathbb{F}|}$, and $y_1 \in \mathbb{R}^{|\mathbb{F}|}$. For every iteration k,

$$\begin{aligned} \mathbf{w}_{k+1} &= \mathrm{prox}_{\iota_{\|\cdot\|_{\infty} \leq 1}} \Big((\mathrm{Id} - \tau_k \mathrm{DD}^{\top}) \mathbf{y}_k + \tau_k \mathrm{Dz} \\ \mathbf{y}_{k+1} &= (1 + \alpha_k) \mathbf{w}_{k+1} - \alpha_k \mathbf{w}_k \end{aligned}$$

Proposition : The proximity operator of the conjugate of the ℓ_1 -norm scaled by parameter $\lambda > 0$ fits the HardTanh activation function,:

$$(\forall \mathbf{x} = (\mathbf{x}_i)_{1 \le i \le N}) \qquad \mathbf{P}_{\|\cdot\|_{\infty} \le \lambda}(\mathbf{x}) = \mathrm{HardTanh}_{\lambda}(\mathbf{x}) = (\mathbf{p}_i)_{1 \le i \le N}$$

$$\mathsf{ere} \qquad \qquad \left\{ \begin{array}{ll} -\lambda & \mathrm{if} \quad \mathbf{p}_i < -\lambda, \end{array} \right.$$

where

$$\mathbf{p}_i = \begin{cases} -\lambda & \text{if } \mathbf{p}_i < -\lambda \\ \lambda & \text{if } \mathbf{p}_i > \lambda, \\ \mathbf{p}_i & \text{otherwise.} \end{cases}$$

27

$$\rightarrow \text{ Minimization problem: } \widehat{x} = \underset{x}{\arg\min} \frac{1}{2} ||x - z||^2 + ||Dx||_1$$

Proposition : The proximity operator of the conjugate of the ℓ_1 -norm scaled by parameter $\lambda > 0$ fits the HardTanh activation function,:

$$(\forall \mathbf{x} = (\mathbf{x}_i)_{1 \le i \le N}) \qquad P_{\|\cdot\|_{\infty} \le \lambda}(\mathbf{x}) = \text{HardTanh}_{\lambda}(\mathbf{x}) = (\mathbf{p}_i)_{1 \le i \le N}$$

where
$$\mathbf{p}_i = \begin{cases} -\lambda & \text{if } \mathbf{p}_i < -\lambda, \\ \lambda & \text{if } \mathbf{p}_i > \lambda, \\ \mathbf{p}_i & \text{otherwise.} \end{cases}$$

27

→ Minimization problem: $\hat{x} = \underset{x}{\arg\min} \frac{1}{2} ||x - z||^2 + ||Dx||_1$

→ (F)ISTA to solve dual reformulation: Set $w_1 \in \mathbb{R}^{|\mathbb{F}|}$, and $y_1 \in \mathbb{R}^{|\mathbb{F}|}$. For every iteration k,

$$\begin{vmatrix} \mathbf{w}_{k+1} &= \mathrm{HardTanh}_1 \left((\mathrm{Id} - \tau_k \mathrm{DD}^\top) \mathbf{y}_k + \tau_k \mathrm{Dz} \right) \\ \mathbf{y}_{k+1} &= (1 + \alpha_k) \mathbf{w}_{k+1} - \alpha_k \mathbf{w}_k \end{cases}$$

→ Unfolded (F)ISTA:

Network Deep-(F)ISTA-GD

→ Network: For every layer $k \in \{2, \ldots, K-1\}$:

$$\begin{cases} W^{[1]} = \begin{bmatrix} D_1^{[1]} \\ (\mathrm{Id}_{|\mathbb{F}|} - D_1^{[1]} D_2^{[1]}) D_1^{[1]} \end{bmatrix}, \\ b^{[1]} = \begin{bmatrix} 0 \\ D_1^{[1]} \mathbf{z}_l \end{bmatrix}, \eta^{[1]} = \begin{cases} \mathrm{Id}_{|\mathbb{F}|} \\ \mathrm{HardTanh}_{\lambda} \end{cases}, \\ W^{[k]} = \begin{bmatrix} 0 & \mathrm{Id}_{|\mathbb{F}|} \\ -\alpha_{k-1} (\mathrm{Id}_{|\mathbb{F}|} - D_1^{[k]} D_2^{[k]}) & (1 + \alpha_{k-1}) (\mathrm{Id}_{|\mathbb{F}|} - D_1^{[k]} D_2^{[k]}) \end{bmatrix}, \\ b^{[k]} = \begin{bmatrix} 0 \\ D_1^{[k]} \mathbf{z}_l \end{bmatrix}, \eta^{[k]} = \begin{cases} \mathrm{Id}_{|\mathbb{F}|} \\ \mathrm{HardTanh}_{\lambda} \end{cases}, \\ W^{[K]} = \begin{bmatrix} 0 & -D_2^{[k]} \end{bmatrix}, b^{[K]} = \mathbf{z}_l, \eta^{[K]} = \mathrm{Id}_N. \end{cases}$$

 \rightarrow **Proposition**: If $D_1^{[k]} = \tau_k D$ and $D_2^{[k]} = D^{\top}$, then Deep-(F)ISTA-GD network fits the generic (F)ISTA scheme.

- $\implies \text{Minimization problem: } \widehat{x} = \arg\min_{x} \frac{1}{2} \|x z\|^2 + \|Dx\|_1$
- → (Sc)CP to solve the minimization problem: Set $w_1 \in \mathbb{R}^{|\mathbb{F}|}$, and $x_1 = x_0 \in \mathbb{R}^{|\mathbb{F}|}$. For every iteration k,

$$\begin{aligned} \mathbf{w}_{k+1} &= \mathrm{prox}_{\iota_{\|\cdot\|_{\infty} \leq 1}} \Big(\mathbf{w}_{k} + \tau_{k} \mathbf{D} \Big((1 + \alpha_{k}) \mathbf{x}_{k} - \alpha_{k} \mathbf{x}_{k-1} \Big) \Big) \\ \mathbf{x}_{k+1} &= \mathrm{prox}_{\frac{\sigma_{k}}{2} \|\cdot - \mathbf{z}\|_{2}^{2}} \Big(\mathbf{x}_{k} - \sigma_{k} \mathbf{D}^{\top} \mathbf{w}_{k+1} \Big) \end{aligned}$$

Remarks :

- ScCP: $\alpha_k = \frac{1}{\sqrt{1+2\gamma\sigma_k}}, \ \sigma_{k+1} = \alpha_k \sigma_k, \ \tau_{k+1} = \frac{\tau_k}{\alpha_k}.$
- CP: $\gamma = 0$, $\sigma_k \equiv \sigma$, $\tau_k \equiv \tau$ and assuming $\sigma \tau \|D\|^2 < 1$.
- $(\mathbf{x}_k)_{k\in\mathbb{N}}$ converges to $\widehat{\mathbf{x}}$.
- Convergence rate O(1/k) for CP and $O(1/k^2)$ for ScCP.

- $\implies \text{Minimization problem: } \widehat{x} = \arg \min_{x} \frac{1}{2} \|x z\|^2 + \|Dx\|_1$
- → (Sc)CP to solve the minimization problem: Set $w_1 \in \mathbb{R}^{|\mathbb{F}|}$, and $x_1 = x_0 \in \mathbb{R}^{|\mathbb{F}|}$. For every iteration k,

$$\begin{aligned} \mathbf{w}_{k+1} &= \mathrm{HardTanh}_1 \Big(\mathbf{w}_k + \tau_k \mathrm{D} \Big((1 + \alpha_k) \mathbf{x}_k - \alpha_k \mathbf{x}_{k-1} \Big) \Big) \\ \mathbf{x}_{k+1} &= \frac{\sigma_k}{1 + \sigma_k} \mathrm{Z} + \frac{1}{1 + \sigma_k} \mathbf{x}_k - \frac{\sigma_k}{1 + \sigma_k} \mathrm{D}^\top \mathbf{w}_{k+1} \end{aligned}$$

Remarks :

- ScCP: $\alpha_k = \frac{1}{\sqrt{1+2\gamma\sigma_k}}, \ \sigma_{k+1} = \alpha_k \sigma_k, \ \tau_{k+1} = \frac{\tau_k}{\alpha_k}.$
- CP: $\gamma = 0$, $\sigma_k \equiv \sigma$, $\tau_k \equiv \tau$ and assuming $\sigma \tau \|D\|^2 < 1$.
- $(\mathbf{x}_k)_{k \in \mathbb{N}}$ converges to $\hat{\mathbf{x}}$.
- Convergence rate O(1/k) for CP and $O(1/k^2)$ for ScCP.

(Sc)CP

- $\implies \text{Minimization problem: } \widehat{x} = \underset{x}{\arg\min} \frac{1}{2} \|x z\|^2 + \|Dx\|_1$
- → (Sc)CP to solve the minimization problem: Set $w_1 \in \mathbb{R}^{|\mathbb{F}|}$, and $x_1 = x_0 \in \mathbb{R}^{|\mathbb{F}|}$. For every iteration k,

$$\begin{aligned} \mathbf{w}_{k+1} &= \mathrm{HardTanh}_1 \Big(\mathbf{w}_k + \tau_k \mathrm{D} \Big((1 + \alpha_k) \mathbf{x}_k - \alpha_k \mathbf{x}_{k-1} \Big) \Big) \\ \mathbf{x}_{k+1} &= \frac{\sigma_k}{1 + \sigma_k} \mathrm{z} + \frac{1}{1 + \sigma_k} \mathbf{x}_k - \frac{\sigma_k}{1 + \sigma_k} \mathrm{D}^\top \mathbf{w}_{k+1} \end{aligned}$$

Unfolded (Sc)CP:

Network Deep-(Sc)CP-GD

→ Network: For every layer $k \in \{2, ..., K - 1\}$:

$$\begin{cases} W^{[1]} = \begin{bmatrix} \mathrm{Id}_{N} \\ 2D_{1}^{[1]} \end{bmatrix}, b^{[1]} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \eta^{[1]} = \begin{cases} \mathrm{Id}_{N} \\ \mathrm{HardTanh}_{\lambda} \end{cases}, \\ W^{[k]} = \begin{bmatrix} \frac{1}{1+\sigma_{k-1}} & -\frac{\sigma_{k-1}}{1+\sigma_{k-1}} \\ \frac{1+\alpha_{k}}{1+\sigma_{k-1}} D_{1}^{[k]} - \alpha_{k} \\ \mathbf{1}^{[k]} & \mathrm{Id}_{|\mathbb{F}|} - \frac{(1+\alpha_{k})\sigma_{k-1}}{1+\sigma_{k-1}} \\ \mathbf{1}^{[k]} = \begin{bmatrix} \frac{\sigma_{k-1}}{1+\sigma_{k-1}} \mathbf{z} \\ \frac{(1+\alpha_{k})\sigma_{k-1}}{1+\sigma_{k-1}} \mathbf{z} \\ \frac{1+\alpha_{k}}{1+\sigma_{k-1}} \mathbf{z} \end{bmatrix}, \eta^{[k]} = \begin{cases} \mathrm{Id}_{N} \\ \mathrm{HardTanh}_{\lambda} \end{cases}, \\ W^{[K]} = \begin{bmatrix} \mathrm{Id}_{N} & 0 \end{bmatrix}, b^{[K]} = 0, \eta^{[K]} = \mathrm{Id}_{N}. \end{cases}$$

→ **Proposition**: If $D_1^{[k]} = \tau_k D$ and $D_2^{[k]} = D^{\top}$, then the Deep-(Sc)CP-GD network fits the generic (Sc)CP scheme.

Performance Gaussian image denoising

Original

PSNR/SSIM

PSNR/SSIM

14.1/0.25

TV

26.0/0.84

26.0/0.76

NL-TV

26.6/0.85

Proposed

28.2/0.87

28.8/0.81 32

28.5/0.79

Original

8.13/0.09

24.5/0.64

24.0/0.76

DnCNN

24.4/0.76

Proposed

25.2/0.80

 $\begin{array}{c}\textbf{25.9/0.70}\\\textbf{33}\end{array}$

25.4/0.65

Architecture comparisons for texture segmentation

• SNR

• Robustness: $\|f_{\Theta}(\mathbf{z} + \epsilon) - f_{\Theta}(\mathbf{z})\| \le \chi \|\epsilon\|$.

Performance texture segmentation:

 $\implies \text{Minimization problem: } \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \sum_{j} w_{j,n} \log_2 \mathcal{L}_{j,n} \|^2 + \|\mathbf{Dx}\|_1$

Performance texture segmentation

I- Model: Strong convexity in unsupervised image processing.

II- Algorithmic: Efficiency regions of strong convexity and Lipschitz parameters to identifying the most efficient first-order algorithm for image analysis.

III- Deep learning: On strong convexity in the design of unfolded deep learning architectures.

- I- Model: Strong convexity in unsupervised image processing.
 - \rightarrow Denoising, texture segmentation.
 - \rightarrow Require particular care for modeling.
- II- Algorithmic: Efficiency regions of strong convexity and Lipschitz parameters to identifying the most efficient first-order algorithm for image analysis.

III- Deep learning: On strong convexity in the design of unfolded deep learning architectures.

- I- Model: Strong convexity in unsupervised image processing.
 - \rightarrow Denoising, texture segmentation.
 - \rightarrow Require particular care for modeling.
- II- Algorithmic: Efficiency regions of strong convexity and Lipschitz parameters to identifying the most efficient first-order algorithm for image analysis.
 - \rightarrow Efficiency diagram for first order schemes.
 - \rightarrow Extension to other schemes.
- III- Deep learning: On strong convexity in the design of unfolded deep learning architectures.

- I- Model: Strong convexity in unsupervised image processing.
 - \rightarrow Denoising, texture segmentation.

\rightarrow Require particular care for modeling.

- II- Algorithmic: Efficiency regions of strong convexity and Lipschitz parameters to identifying the most efficient first-order algorithm for image analysis.
 - \rightarrow Efficiency diagram for first order schemes.
 - \rightarrow Extension to other schemes.
- III- Deep learning: On strong convexity in the design of unfolded deep learning architectures.

 \rightarrow Deep-(F)ISTA and Deep-(Sc)CP in between standard image analysis and deep learning.

 \rightarrow Compute tight Lipschitz bounds.

References

Model:

• J. Colas, N. Pustelnik, C. Oliver, J.-C. Geminard, V. Vidal, Nonlinear denoising for solid friction dynamics characterization, Physical Review E, 100, 032803, Sept. 2019.

• B. Pascal, N. Pustelnik, and P. Abry, Strongly Convex Optimization for Joint Fractal Feature Estimation and Texture Segmentation, ACHA, vol. 54, pp 303-322, 2021.

Convergence rate:

• L. M. Briceño-Arias and N. Pustelnik, Proximal or gradient steps for cocoercive operators, accepted to Signal Processing, 2022. Deep unfolded schemes:

• M. Jiu and N. Pustelnik, A deep primal-dual proximal network for image restoration, IEEE JSTSP Special Issue on Deep Learning for Image/Video Restoration and Compression, vol. 15, no. 2,pp. 190–203, Feb. 2021.

• H.T.V. Le, N. Pustelnik, M. Foare, The faster proximal algorithmm, the better unfolded deep learning architecture ? The study case of image denoising, EUSIPCO, Belgrade, Serbia, 2022.

Strong convexity in signal/image analysis

Piecewise constant denoising: $z = \overline{x} + n$ with $n = \mathcal{N}(0, \sigma^2 Id)$

→ Minimization problem:

$$\widehat{\mathbf{x}}(\mathbf{z};\widehat{\lambda}) = \arg\min_{\mathbf{x}\in\mathbb{R}^N} \frac{1}{2} \|\mathbf{x}-\mathbf{z}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_{\bullet} \quad \text{where} \quad \begin{cases} \mathbf{D}\mathbf{x} = \mathbf{d} * \mathbf{x} \\ \lambda > \mathbf{0} \end{cases}$$

Piecewise constant denoising: $z = \overline{x} + n$ with $n = \mathcal{N}(0, \sigma^2 Id)$

Minimization problem:

$$\widehat{\mathbf{x}}(\mathbf{z};\widehat{\lambda}) = \arg\min_{\mathbf{x}\in\mathbb{R}^N} \frac{1}{2} \|\mathbf{x}-\mathbf{z}\|_2^2 + \lambda \|\mathbf{D}\mathbf{x}\|_{\bullet} \quad \text{where} \quad \begin{cases} \mathbf{D}\mathbf{x} = \mathbf{d} \ast \\ \lambda > \mathbf{0} \end{cases}$$

Х

→ Minimization problem

$$\widehat{\mathbf{x}}(\mathbf{z};\widehat{\boldsymbol{\lambda}}) = \arg\min_{\mathbf{x}\in\mathbb{R}^N} \frac{1}{2} \|\mathbf{x}-\mathbf{z}\|_2^2 + \boldsymbol{\lambda} \|\mathbf{D}\mathbf{x}\|_{\bullet} \quad \text{where} \quad \begin{cases} \mathbf{D}\mathbf{x} = \mathbf{d} * \mathbf{x} \\ \boldsymbol{\lambda} > \mathbf{0} \end{cases}$$

Piecewise linear denoising: Stick-Slip

Phase diagram:

Piecewise linear denoising: Stick-Slip

Phase diagram:

Limitations:

- \rightarrow Large dimensionality of each signal.
- \rightarrow Evaluation for different λ values.
- \rightarrow Large amount of signal to analyze.

Advantages:

 \rightarrow Strongly convex formulation.

→ Gas/liquid flow in porous medium: LPENSL experiment

- Segment gas/liquid + accurate estimation of the interface.
- Large-scale data.

→ Gas/liquid flow in porous medium: LPENSL experiment

- Segment gas/liquid + accurate estimation of the interface.
- Large-scale data.

- Scale-free descriptors.
- Require to compute the slope at each location.

42

log frequency

→ PLOVER: [Pascal, Pustelnik, Abry, ACHA, 2021]

$$(\widehat{\mathbf{v}}, \widehat{\mathbf{h}}) \in \operatorname{Argmin}_{\mathbf{v},\mathbf{h}} \sum_{j} \|\log_2 \mathcal{L}_j - \mathbf{v} - j\mathbf{h}\|_2^2 + \lambda \| [\operatorname{Dv}; \alpha \operatorname{Dh}]^\top \|_{2,1}$$

- Behavior through the scales $\mathcal{L}_{i,n} \simeq s_n 2^{jh_n}$ when $2^j \to 0$
- Wavelet coefficients/leaders $\zeta_j = D_j z$ and $\mathcal{L}_{j,n} = \sup_{\lambda_{j',n'} \subset \Lambda_{j,n}} |\zeta_{j',n'}|$

→ PLOVER: [Pascal, Pustelnik, Abry, ACHA, 2021]

$$(\widehat{\mathbf{v}}, \widehat{\mathbf{h}}) \in \operatorname{Argmin}_{\mathbf{v},\mathbf{h}} \sum_{j} \|\log_2 \mathcal{L}_j - \mathbf{v} - j\mathbf{h}\|_2^2 + \lambda \| [\operatorname{Dv}; \alpha \operatorname{Dh}]^\top \|_{2,1}$$

- Behavior through the scales $\mathcal{L}_{j,n} \simeq s_n 2^{jh_n}$ when $2^j \to 0$
- Wavelet coefficients/leaders $\zeta_j = D_j z$ and $\mathcal{L}_{j,n} = \sup_{\lambda_{j',n'} \subset \Lambda_{j,n}} |\zeta_{j',n'}|$

Limitations:

- \rightarrow Large dimensionality of each image.
- \rightarrow Evaluation for different λ values.
- \rightarrow Large amount of signal to analyze.

Advantages:

- \rightarrow Combined estimation and segmentation.
- \rightarrow Joint estimation local variance/regularity.
- \rightarrow Strongly convex, closed form proximity operator for

data-fidelity term, dual formulation possible.

Mask

T-ROF [Cai2013]

Synthetic texture

Matrix factorization [Yuan2015]

Optimal solution

Proposed [Pascal2019]

Results on multiphase flow data

 $^{*}(Q_{G}, Q_{L}) = (300, 300) \text{ mL/min}$

 $^{+}(Q_G, Q_L) = (1200, 300) \text{ mL/min}$