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Context

� Signal processing

� Image processing

K

z = η1

z = η2

� Graph processing
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Context

K

z = η1

z = η2

Three quantities of interest:

• z ∈ RN : Data/measures.

• x ∈ RN : True (unknown) parameters.

• x̂ ∈ RN : Estimated parameters.
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Context

Data: z

Direct/acquisition model

Design a cost function

Minimization algorithm

Hyperparameter tuning

Estimated parameters: x̂(z; λ̂)

Data: z

z = D(Ax)

x̂(z;λ) ∈ Argmin
x

φ(x; z)+λψ(x)

Sequence x[k+1] = Φx[k]

λ̂ ∈ Argmin
λ

∥x− x̂(z;λ)∥22

Estimated parameters: x̂(z; λ̂)
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Design a cost function

Minimization algorithm

Hyperparameter tuning

Estimated parameters: x̂(z; λ̂)

Data: z

z = D(Ax)

x̂(z;λ) ∈ Argmin
x

φ(x; z)+λψ(x)

Sequence x[k+1] = Φx[k]

λ̂ ∈ Argmin
λ
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Estimated parameters: x̂(z; λ̂)
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Iterative scheme

Minimization problem :

x̂ ∈ Argmin
x

f (x) + g(x)

Design of a recursive sequence of the form

(∀k ∈ N) x[k+1] = Φx[k],

Gradient descent Φ = Id− τ(∇f +∇g)

Proximal point algorithm Φ = proxτ(f+g)

Forward-Backward Φ = proxτg (Id− τ∇f )

Peaceman-Rachford Φ = (2proxτg − Id) ◦ (2proxτ f − Id)

Douglas-Rachford Φ = proxτg (2proxτ f − Id) + Id− proxτ f
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Iterative scheme

Minimization problem :

x̂ ∈ Argmin
x

f (x) + h(Dx)

• Require the computation of proxh(D·). Few closed form.

• Reformulation in the dual: min
w∈G

f ∗(−D∗w) + h∗(w),

• Primal-dual algorithms: min
x

f (x) + f̃ (x) + h(Dx),

→ f has a ν-Lipschitz gradient.

Hyperparameters setting: τ > 0, γ > 0, such that 1
τ − γ∥D∥2 > ν

2

For k = 0, 1, . . .⌊
w[k+1] = prox

τ f̃

(
w[k] − τ∇f (w[k])− τD∗x[k]

)
x[k+1] = proxγh∗

(
x[k] + γD(2w[k+1] − w[k])

)
6
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Preliminary remarks

Minimization problem :

x̂ ∈ Argmin
x

f (x) + g(x)

• Smooth and strongly convex.

• Focus on (linear) convergence of the iterates, i.e.

(∀k ∈ N) ∥x[k] − x̂∥ ≤ rk∥x[0] − x̂∥.

Questions:

• Proximal step or gradient step ?

• Design efficiency region diagram ?

Notations: C 1,1
L models the class of differentiable functions having

a L-Lipschitz gradient. 7



Theoretical comparisons

Proposition (see [Briceño-Arias, Pustelnik, 2021] for detailed references)

In the context of min f + g where f , g ∈ Γ0(H), f ∈ C 1,1
Lf

(H), f is

ρ-strongly convex, and g ∈ C 1,1
Lg

(H), for some ρ ∈ ]0, Lf [, and let τ > 0.

Then, the following holds:

• Gradient descent Suppose that τ ∈
]
0, 2L−1

f L−1
g /(L−1

g + L−1
f )
[
.

Then, Id− τ(∇g +∇f ) is rG (τ)−Lipschitz continuous, where

rG (τ) := max
{
|1− τρ|, |1− τ(Lf + Lg )|

}
∈ ]0, 1[ .

In particular, the minimum is achieved at

τ∗ =
2

ρ+ Lf + Lg

and
rG (τ

∗) =
Lf + Lg − ρ

Lf + Lg + ρ
.
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Theoretical comparisons

Proposition (see [Bricẽno-Arias, Pustelnik, 2021] for detailed references)

In the context of min f + g where f , g ∈ Γ0(H), f ∈ C 1,1
Lf

(H), f is

ρ-strongly convex, and g ∈ C 1,1
Lg

(H), for some ρ ∈ ]0, Lf [, and let τ > 0.
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]
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f

[
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Theoretical comparisons
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Theoretical comparisons

Proposition (see [Briceño-Arias, Pustelnik, 2021] for detailed references)

In the context of min f + g where f , g ∈ Γ0(H), f ∈ C 1,1
Lf

(H), f is

ρ-strongly convex, and g ∈ C 1,1
Lg

(H), for some ρ ∈ ]0, Lf [, and let τ > 0.

• FBS (v2) Suppose that τ ∈
]
0, 2L−1

g

]
. Then proxτ f (Id − τ∇g)

is rT2(τ)−Lipschitz continuous, where

rT2(τ) :=
1

1 + τρ
∈ ]0, 1[ .

In particular, the minimum is achieved at

τ∗ = 2L−1
g and rT2(τ

∗) =
1

1 + 2L−1
g ρ

.
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Theoretical comparisons
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Theoretical comparisons

Proposition (see [Briceño-Arias, Pustelnik, 2021] for detailed references)

In the context of min f + g where f , g ∈ Γ0(H), f ∈ C 1,1
Lf

(H), f is

ρ-strongly convex, and g ∈ C 1,1
Lg

(H), for some ρ ∈ ]0, Lf [, and let τ > 0.

•PRS (2proxτg − Id) ◦ (2proxτ f − Id) and (2proxτ f − Id) ◦ (2proxτg − Id)

are rR(τ)−Lipschitz continuous, where

rR(τ) = max

{
1− τρ

1 + τρ
,
τLf − 1

τLf + 1

}
∈ ]0, 1[ .

In particular, the minimum is achieved at

τ∗ =

√
1

ρLf
and rR(τ

∗) =
1−

√
L−1
f ρ

1 +
√

L−1
f ρ

.
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Theoretical comparisons

Proposition (see [Briceño-Arias, Pustelnik, 2021] for detailed references)

In the context of min f + g where f , g ∈ Γ0(H), f ∈ C 1,1
Lf

(H) and

g ∈ C 1,1
Lg

(H), suppose that f is ρ−strongly convex, for some ρ ∈ ]0, Lf [,

and let τ > 0. Then, the following holds:

• DRS Sτ∇g ,τ∇f and Sτ∇f ,τ∇g are rS(τ)−Lipschitz continuous, where

rS(τ) = min

{
1 + rR(τ)

2
,

L−1
g + τ 2ρ

L−1
g + τL−1

g ρ+ τ 2ρ

}
∈ ]0, 1[

and rR is defined in p.21.

In particular, the optimal step-size and the minimum in (1) are

(τ∗, rS(τ
∗)) =


(√

1
ρLf
, 1

1+
√

L−1
f ρ

)
, if Lf ≤ 4Lg ;(√

1
ρLg

, 2

2+
√

L−1
g ρ

)
, otherwise.

12



Theoretical comparisons

Proposition (see [Briceño-Arias, Pustelnik, 2021] for detailed references)

In the context of min f + g where f , g ∈ Γ0(H), f ∈ C 1,1
Lf

(H) and

g ∈ C 1,1
Lg

(H), suppose that f is ρ−strongly convex, for some ρ ∈ ]0, Lf [,

and let τ > 0. Then, the following holds:

• DRS Sτ∇g ,τ∇f and Sτ∇f ,τ∇g are rS(τ)−Lipschitz continuous, where

rS(τ) = min

{
1 + rR(τ)

2
,

L−1
g + τ 2ρ

L−1
g + τL−1

g ρ+ τ 2ρ

}
∈ ]0, 1[

and rR is defined in p.21.

In particular, the optimal step-size and the minimum in (1) are

(τ∗, rS(τ
∗)) =


(√

1
ρLf
, 1

1+
√

L−1
f ρ

)
, if Lf ≤ 4Lg ;(√

1
ρLg

, 2

2+
√

L−1
g ρ

)
, otherwise.

12



Theoretical comparisons
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α = 0.1, β = 0.1, ρ = 1

1-EA ωG

1-EA rG

2-FBS ωT1

2-FBS rT1

3-FBS rT2
= ωT2

4-PRS ωR

4-PRS rR

5-DRS ωS

5-DRS rS

Comparison of the convergence rates of EA, FBS, PRS, DRS for two

choices of α = L−1
f , β = L−1

g , and ρ. Note that optimization rates are

better than cocoercive rates in general.
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Theoretical comparisons

Proposition [Briceño-Arias, Pustelnik, 2021]

Let (Lg , ρ) ∈ ]0,+∞[× ]0, 1[. Then r∗G (Lg , ρ) > r∗T1
(ρ) > r∗R(ρ).

The linear convergence rate of PRS is always smaller than

those of algorithms governed by operators EA (gradient descent)

and FBS (forward-backward splitting).
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Theoretical comparisons

Proposition [Briceño-Arias, Pustelnik, 2021]

Let (Lg , ρ) ∈ ]0,+∞[× ]0, 1[ and

η(Lg ) =
1−

√
1− 4Lg

1 +
√
1− 4Lg

∈ ]0, 1[ .

. Then, the following holds:

• Suppose that Lg < 1
4
and that ρ ∈ I (Lg ), where I (β) =

[
Lg max{1/16, η(Lg )}, Lg

η(Lg )

]
.

Then

r∗T2
(Lg , ρ) ≤ min{r∗S (Lg , ρ), r∗R(ρ)}.

• Suppose that Lg < 1
16

and that ρ < χ(Lg ), where χ(Lg ) = min

{
Lg
16
, 1− 8Lg (

√
L−1
g − 2)

}
.

Then

r∗S (Lg , ρ) < min{r∗T2
(Lg , ρ), r

∗
R(ρ)}.

In any other case, we have

r∗R(ρ) ≤ min{r∗T2
(Lg , ρ), r

∗
S (Lg , ρ)}. 15



Theoretical comparisons
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g , and ρ.
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Numerical comparisons: Smooth TV1D denoising

First formulation: minimize
x∈RN

1

2
∥x − z∥22︸ ︷︷ ︸

f (x)

+χh(Lx)︸ ︷︷ ︸
g(x)

→ f is ρ = 1 strongly convex, Lf = 1, and Lg = χ∥L∥2
µ .

1- EA: Use Gτ(∇g+∇f )

2- FBS: Use Tτ∇f ,τ∇g

Second formulation: minx∈H
1

2
∥x − z∥22 + χhI1(LI1x)︸ ︷︷ ︸

f̃ (x)

+χhI2(LI2x)︸ ︷︷ ︸
g̃(x)

→f̃ is ρ = 1 strongly convex, Lf̃ =
µ+χ∥LI2∥

2

µ and Lg̃ =
χ∥LI1∥

2

µ

3- FBS 2: Use T
τ∇g̃ ,τ∇f̃

4- FBS 3: Use T
τ∇f̃ ,τ∇g̃

5- PRS: Use R
τ∇f̃ ,τ∇g̃

6- DRS: Use S
τ∇f̃ ,τ∇g̃
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Numerical comparisons: Smooth TV1D denoising
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Original/degraded/reconstructed signals
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-10

10
-8

10
-6

10
-4

10
-2

10
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Exp. 1-EA
Exp. 2-FBS
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Exp. 4-FBS3
Exp. 5-PRS
Exp. 6-DRS
Th. 1-EA
Th. 2-FBS
Th. 3-FBS2
Th. 4-FBS3
Th. 5-PRS
Th. 6-DRS

Errors vs Iterations

Piecewise constant denoising estimates after 10, 100, and 10000

iterations with χ = 0.7 and µ = 0.0001 (a) and χ = 0.7 and

µ = 0.002 (b). We can observe that the piecewise constant

estimate is obtained after 100 iterations for DRS or PRS while EA

or FBS requires much more iterations. We also exhibit the

experimental and theoretical errors associated with each

implemented method for optimal step-size τ with respect to

iteration number (c-d). The behavior is in accordance with the

results observed on the first row.
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Numerical comparisons: min
v,h

∑
j ∥ log2 Lj − v − jh∥22 + λv∥Dv∥1 + λh∥Dh∥1
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ρ+L

τ = 1
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ρ+L
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τ = 5
√

1
Lρ

Problem solved:

segmentation problem over

the range j ∈ {2, 3, 4},
λv = 0.1, and λh = 200.

Display: Comparisons of

the theoretical upper bound

(i.e., rΦ(τ)
k∥x0 − x∞∥2)

versus the numerical error

(i.e., ∥xk − x∞∥2) w.r.t. the
number of iterations.
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Supervised deep image analysis:

Strong convexity to design

supervised deep proximal

architectures



Context

Data: z

Direct/acquisition model

Design a cost function

Minimization algorithm

Hyperparameter tuning

Estimated parameters: x̂(z; λ̂)

Data: z

z = D(Ax)

x̂(z;λ) ∈ Argmin
x

φ(x; z)+λψ(x)

Sequence x[k+1] = Φx[k]

λ̂ ∈ Argmin
λ

∥x− x̂(z;λ)∥22

Estimated parameters: x̂(z; λ̂)
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Standard learning and deep learning

Data: z

Direct/acquisition model

Design a cost function

Minimization algorithm

Hyperparameter tuning

Estimated parameters: x̂(z; θ̂)

Data: z

Deep learning procedure

Estimated parameters: x̂(z; θ̂)
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Standard learning and deep learning

Create a database S =
{
(xℓ, zℓ) ∈ RN × RN

∣∣ ℓ ∈ {1, . . . , L}
}

Learn a prediction function dΘ

Θ̂ ∈ Argmin
Θ

E(Θ) :=
1

L

L∑
ℓ=1

f1
(
dΘ(zℓ), xℓ

)
+ f2(Θ)

• Linear model: dΘ(zℓ) = Θ⊤zℓ

• Non-linear model:

dΘ(zℓ) = η[K ]
(
W [K ] . . . η[1](W [1]zℓ + b[1]) . . .+ b[K ]

)
where Θ = {W [k], b[k]}1≤k≤K with

W [k] denotes a weight matrix,

b[k] is a bias vector,

η[k] is the nonlinear activation function.

22
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Synthesis formulation and proximal gradient descent: LISTA

Synthesis formulation: min
x

1

2
∥Hx− z∥22 + λ∥x∥1 where H ∈ RN×N

Forward-backward iterations:

x[k+1] = proxτλ∥·∥1
(x[k] − τH∗(Hx[k] − z))

Reformulation:

x[k+1] = proxτλ∥·∥1
((Id− τH∗H)x[k] + τH∗ z))

Layer network:

x[k+1]= proxτλ∥·∥1

(
Id− τH∗H x[k] + τH∗z

)

η[k] W[k] b[k]

[Gregor, LeCun, 2010]
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Standard activation functions

Preliminary remarks [Combettes, Pesquet, 2020]

• Most of activation functions are proximity operator :

ReLU, Unimodal sigmoid, Softmax . . .

• For W [k] bounded linear operators and ηk proximity operators,

dΘ model allows to derive tight Lipschitz bounds for

feedforward neural networks in order to evaluate robustness.

24
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Iterative scheme

Minimization problem : x̂ = argmin
x

1
2∥x− z∥2 + ∥Dx∥1

Dual reformulation: ŵ ∈ Argmin
w∈G

1
2
∥z−D⊤w∥2 + ι∥·∥∞≤1(w)

• Primal solution: x̂ = z−D⊤ŵ.

• Solution obtained with proximal gradient based procedure.

• Accelerated schemes (e.g., FISTA).

Primal-dual algorithms:

• Resolution with Chambolle-Pock iterations.

For k = 0, 1, . . .⌊
x[k+1] = prox τ

2
∥·−z∥22

(
x[k] − τD⊤w[k]

)
w[k+1] = proxι∥·∥∞≤1

(
w[k] + γD(2x[k+1] − x[k])

)
• Acceleration when the data-term is strongly convex. 25



(F)ISTA in the dual

Minimization problem: x̂ = argmin
x

1
2∥x− z∥2 + ∥Dx∥1

(F)ISTA to solve dual reformulation:

Set w1 ∈ R|F|, and y1 ∈ R|F|. For every iteration k, wk+1 = proxι∥·∥∞≤1

(
(Id− τkDD⊤)yk + τkDz

)
yk+1 = (1 + αk)wk+1 − αkwk

Preliminary remarks:

• FISTA: (wk)k∈N converges to ŵ when αk = tk−1
tk+1

and

tk+1 =
k+a−1

a , a > 2, τ < 1
∥D∥2 and F̃ (wk)− F̃ (ŵ) ≤ ζ

k2 .

• ISTA: When αk ≡ 0, (wk)k∈N converges to ŵ when τ < 2
∥D∥2 for

this limit case, and F̃ (wk)− F̃ (ŵ) ≤ ζ
k .

• (F)ISTA: x̂ = z−D⊤ŵ
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(F)ISTA in the dual

Minimization problem: x̂ = argmin
x

1
2∥x− z∥2 + ∥Dx∥1

(F)ISTA to solve dual reformulation:
Set w1 ∈ R|F|, and y1 ∈ R|F|. For every iteration k, wk+1 = proxι∥·∥∞≤1

(
(Id− τkDD⊤)yk + τkDz

)
yk+1 = (1 + αk)wk+1 − αkwk

Proposition : The proximity operator of the conjugate of the ℓ1-norm

scaled by parameter λ > 0 fits the HardTanh activation function,:

(∀x = (xi )1≤i≤N) P∥·∥∞≤λ(x) = HardTanhλ(x) = (pi )1≤i≤N

where

pi =


−λ if pi < −λ,
λ if pi > λ,

pi otherwise. 27
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(F)ISTA in the dual

Minimization problem: x̂ = argmin
x

1
2∥x− z∥2 + ∥Dx∥1

(F)ISTA to solve dual reformulation:
Set w1 ∈ R|F|, and y1 ∈ R|F|. For every iteration k, wk+1 = HardTanh1

(
(Id− τkDD⊤)yk + τkDz

)
yk+1 = (1 + αk)wk+1 − αkwk

Unfolded (F)ISTA:

[
w[k]

w[k+1]

]
=

{
Id|F|

HardTanh1

} ( [
0 Id|F|

−αk−1(Id|F| − D
[k]
1 D

[k]
2 ) (1 + αk−1)(Id|F| − D

[k]
1 D

[k]
2 )

] [
w[k−1]

w[k]

]
+

[
0

D
[k]
1 zl

] )

η[k] W[k] b[k]
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Network Deep-(F)ISTA-GD

Network: For every layer k ∈ {2, . . . ,K − 1}:

W [1]=

[
D

[1]
1

(Id|F| −D
[1]
1 D

[1]
2 )D

[1]
1

]
,

b[1]=

[
0

D
[1]
1 zl

]
, η[1]=

{
Id|F|

HardTanhλ

}
,

W [k]=

[
0 Id|F|

−αk−1(Id|F| −D
[k]
1 D

[k]
2 ) (1 + αk−1)(Id|F| −D

[k]
1 D

[k]
2 )

]
,

b[k]=

[
0

D
[k]
1 zl

]
, η[k]=

{
Id|F|

HardTanhλ

}
,

W [K ]=
[
0 −D

[k]
2

]
, b[K ]=zl , η

[K ]= IdN .

Proposition: If D
[k]
1 = τkD and D

[k]
2 = D⊤, then

Deep-(F)ISTA-GD network fits the generic (F)ISTA scheme.
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(Sc)CP

Minimization problem: x̂ = argmin
x

1
2∥x− z∥2 + ∥Dx∥1

(Sc)CP to solve the minimization problem:

Set w1 ∈ R|F|, and x1 = x0 ∈ R|F|. For every iteration k , wk+1 = proxι∥·∥∞≤1

(
wk + τkD

(
(1 + αk) xk − αkxk−1

))
xk+1 = proxσk

2
∥·−z∥22

(
xk − σkD

⊤wk+1

)
Remarks :

• ScCP: αk = 1√
1+2γσk

, σk+1 = αkσk , τk+1 =
τk
αk
.

• CP: γ = 0, σk ≡ σ, τk ≡ τ and assuming στ∥D∥2 < 1.

• (xk)k∈N converges to x̂.

• Convergence rate O(1/k) for CP and O(1/k2) for ScCP.
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x

1
2∥x− z∥2 + ∥Dx∥1
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Set w1 ∈ R|F|, and x1 = x0 ∈ R|F|. For every iteration k ,⌊
wk+1 = HardTanh1

(
wk + τkD

(
(1 + αk) xk − αkxk−1

))
xk+1 = σk

1+σk
z+ 1

1+σk
xk − σk

1+σk
D⊤wk+1

Unfolded (Sc)CP:

[
xk

wk+1

]
=

{
IdN

HardTanh1

}(  1
1+σk−1

−
σk−1

1+σk−1
D

[k−1]
2

1+αk
1+σk−1

D
[k]
1 − αkD

[k]
1 Id|F| −

(1+αk )σk−1
1+σk−1

D
[k]
1 D

[k−1]
2

 [xk−1

wk

]
+


σk−1

1+σk−1
z

(1+αk )σk−1
1+σk−1

D
[k]
1 z

 )

η[k] W[k] b[k]
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Network Deep-(Sc)CP-GD

Network: For every layer k ∈ {2, . . . ,K − 1}:

W [1]=

[
IdN

2D
[1]
1

]
, b[1] =

[
0

0

]
, η[1] =

{
IdN

HardTanhλ

}
,

W [k]=

 1
1+σk−1

− σk−1

1+σk−1

[k−1]

2

1+αk

1+σk−1
D

[k]
1 − αk

[k]
1 Id|F| − (1+αk )σk−1

1+σk−1

[k]

1

[k−1]
2

 ,
b[k] =

 σk−1

1+σk−1
z

(1+αk )σk−1

1+σk−1

[k]

1
z

, η[k] = { IdN

HardTanhλ

}
,

W [K ]=
[
IdN 0

]
, b[K ] = 0, η[K ] = IdN .

Proposition: If D
[k]
1 = τkD and D

[k]
2 = D⊤, then the

Deep-(Sc)CP-GD network fits the generic (Sc)CP scheme.
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Performance Gaussian image denoising

Training loss PSNR on test dataset
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Original Noisy TV NL-TV DnCNN Proposed

PSNR/SSIM 14.1/0.25 26.0/0.84 26.6/0.85 27.9/0.86 28.2/0.87

PSNR/SSIM 14.1/0.13 26.0/0.76 27.7/0.79 28.5/0.79 28.8/0.81
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Original Noisy TV NL-TV DnCNN Proposed

PSNR/SSIM 8.13/0.09 23.6/0.76 24.0/0.76 24.4/0.76 25.2/0.80

PSNR/SSIM 8.14/0.043 24.5/0.64 25.1/0.65 25.4/0.65 25.9/0.70
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Architecture comparisons for texture segmentation

• SNR

Deep-ISTA-GD Deep-FISTA-GD Deep-CP-GD Deep-ScCP-GD

• Robustness: ∥fΘ(z+ ϵ)− fΘ(z)∥ ≤ χ∥ϵ∥.

Deep-ISTA-GD Deep-FISTA-GD Deep-CP-GD Deep-ScCP-GD
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Performance texture segmentation:

Minimization problem: min
x

1
2∥x−

∑
j wj,n log2 Lj,n∥2 + ∥Dx∥1

x h ĥ(TV) ĥ(DnCNN) ĥ(DSH)

-4

-2

0

2

0

0.5

1

1.5

Seg. ĥ(TV) Seg. ĥ(DnCNN) Seg. ĥ(DSH)

0

0.5

1
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Performance texture segmentation
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Outline → Conclusions and perspectives

I- Model: Strong convexity in unsupervised image processing.

→ Denoising, texture segmentation.

→ Require particular care for modeling.

II- Algorithmic: Efficiency regions of strong convexity and

Lipschitz parameters to identifying the most efficient

first-order algorithm for image analysis.

→ Efficiency diagram for first order schemes.

→ Extension to other schemes.

III- Deep learning: On strong convexity in the design of unfolded

deep learning architectures.

→ Deep-(F)ISTA and Deep-(Sc)CP in between standard

image analysis and deep learning.

→ Compute tight Lipschitz bounds.
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Piecewise constant denoising: z = x+ n with n = N (0, σ2Id)

Minimization problem:

x̂(z; λ̂) = arg min
x∈RN

1

2
∥x− z∥22 + λ ∥Dx∥• where

Dx = d ∗ x

λ > 0

Linear denoising
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Non-linear denoising.
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Piecewise linear denoising: z = x+ n with n = N (0, σ2Id)

Minimization problem

x̂(z; λ̂) = arg min
x∈RN

1

2
∥x−z∥22+λ∥ D x∥• where

Dx = d ∗ x

λ > 0

Non-linear denoising: piecewise constant/linear
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Piecewise linear denoising: Stick-Slip

Solid friction, LPENSL experiment [Colas, et al., 2019]

Phase diagram:

Limitations:

→ Large dimensionality of each signal.

→ Evaluation for different λ values.

→ Large amount of signal to analyze.

Advantages:

→ Strongly convex formulation.
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Phase diagram:
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Texture segmentation: Multiphase flow

Gas/liquid flow in porous medium: LPENSL experiment

• Segment gas/liquid + accurate estimation

of the interface.

• Large-scale data.

Texture segmentation:

• Scale-free descriptors.

• Require to compute the slope at each

location.
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Texture segmentation: Multiphase flow

PLOVER: [Pascal, Pustelnik, Abry, ACHA, 2021]

(v̂, ĥ) ∈ Argmin
v,h

∑
j

∥ log2 Lj − v − jh∥22 + λ ∥
[
Dv;αDh

]⊤∥∥
2,1

• Behavior through the scales Lj,n ≃ sn2
jhn when 2j → 0

• Wavelet coefficients/leaders ζj = Djz and Lj,n = sup
λj′,n′⊂Λj,n

|ζj′,n′ |

Limitations:

→ Large dimensionality of each image.

→ Evaluation for different λ values.

→ Large amount of signal to analyze.

Advantages:

→ Combined estimation and segmentation.

→ Joint estimation local variance/regularity.

→ Strongly convex, closed form proximity operator for

data-fidelity term, dual formulation possible.
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(v̂, ĥ) ∈ Argmin
v,h

∑
j

∥ log2 Lj − v − jh∥22 + λ ∥
[
Dv;αDh

]⊤∥∥
2,1

• Behavior through the scales Lj,n ≃ sn2
jhn when 2j → 0

• Wavelet coefficients/leaders ζj = Djz and Lj,n = sup
λj′,n′⊂Λj,n

|ζj′,n′ |

Limitations:

→ Large dimensionality of each image.

→ Evaluation for different λ values.

→ Large amount of signal to analyze.

Advantages:

→ Combined estimation and segmentation.

→ Joint estimation local variance/regularity.

→ Strongly convex, closed form proximity operator for

data-fidelity term, dual formulation possible. 43



Texture segmentation: Multiphase flow

Mask Synthetic texture Optimal solution

T-ROF Matrix factorization Proposed

[Cai2013] [Yuan2015] [Pascal2019]
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Results on multiphase flow data
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