Compactly locally uniformly convex functions¹

Constantin Zălinescu Octav Mayer Institute of Mathematics, Iași, Romania zalinesc@uaic.ro

Challenges and Advances in Modern Variational Analysis Conference dedicated to Professor Jean-Paul Penot to celebrate his 80th birthday Limoges March 14-15, 2023

¹Work in progress in collaboration with P. Shunmugaraj, HT Kanpur, India no.

Motivation

Let $(X, \|\cdot\|)$ be a real Banach space; one says that: X is uniformly convex (rotund) if

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in S_X : \|y - x\| \ge \varepsilon \Rightarrow \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta,$

X is locally uniformly convex (rotund) if

$$\begin{aligned} \forall x \in S_X, \ \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall y \in S_X : \\ \|y - x\| \ge \varepsilon \Rightarrow \left\| \frac{1}{2} (x + y) \right\| \le 1 - \delta. \end{aligned}$$

We may continue with

X is locally uniformly convex (rotund) at $x_0 \in S_X$ if

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in S_X : \|x - x_0\| \ge \varepsilon \Rightarrow \left\| \frac{1}{2} (x + x_0) \right\| \le 1 - \delta.$

The sequential characterizations:

X is uniformly convex (UC) if and only if

$$\forall (x_n), (y_n) \subset S_X : \left\| \frac{1}{2} (x_n + y_n) \right\| \to 1 \Rightarrow \|x_n - y_n\| \to 0;$$

X is locally uniformly convex (LUR) if and only if

$$\forall x \in S_X, \ \forall (x_n) \subset S_X : \left\| \frac{1}{2} (x + x_n) \right\| \to 1 \Rightarrow \|x_n - x\| \to 0;$$

X is LUR at $x_0 \in S_X$ if and only if

$$\forall (x_n) \subset S_X : \left\| \frac{1}{2} (x_n + x_0) \right\| \to 1 \Rightarrow \ \|x_n - x_0\| \to 0.$$

These notions were extended to proper convex functions.

Let $f: X \to \overline{\mathbb{R}}$ be a proper convex function.

"The functional f(x) is called *uniformly convex* if there exists a function $\delta(r)$, $\delta(r) > 0$ for r > 0 (which can be assumed monotonic), such that $f((x+y)/2) \le \frac{1}{2}(f(x) + f(y)) - \delta(||x-y||)$ for all x, y";² equivalently,

$$\begin{aligned} \forall \varepsilon > 0, \ \exists \, \delta > 0, \ \forall \, x, y \in \mathrm{dom} \, f : \\ \|x - y\| \ge \varepsilon \ \Rightarrow \ f(\frac{1}{2}x + \frac{1}{2}y) \le \frac{1}{2}f(x) + \frac{1}{2}f(y) - \delta; \end{aligned}$$

f is locally uniformly convex (LUC or LUR) if

 $\begin{aligned} \forall x \in \operatorname{dom} f, \, \forall \varepsilon > 0, \, \exists \delta > 0, \, \forall y \in \operatorname{dom} f : \\ \|x - y\| \ge \varepsilon \; \Rightarrow \; f(\frac{1}{2}x + \frac{1}{2}y) \le \frac{1}{2}f(x) + \frac{1}{2}f(y) - \delta; \end{aligned}$

²[LP66] E.S. Levitin, B.T. Polyak, *Convergence of minimizing of sequences in the conditional-extremum problem*, Dokl. Akad. Nauk SSSR 168 (1966), 997–1000.

f is locally uniformly convex at $x_0 \in \text{dom } f$ if³

$$\begin{aligned} \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in \text{dom} f : \\ \|x - x_0\| \ge \varepsilon \ \Rightarrow \ f(\frac{1}{2}x + \frac{1}{2}x_0) \le \frac{1}{2}f(x) + \frac{1}{2}f(x_0) - \delta. \end{aligned}$$

We may add the strongest convexity notion (possibly, inspired by the parallelogram law):

"A functional f(x) is said to be *strongly convex* if there exists a $\gamma > 0$ such that $f((x + y)/2) \le \frac{1}{2}(f(x) + f(y)) - \frac{1}{4}\gamma ||x - y||^2$ for all x, y".⁴

³[Z83] C. Z., *On uniformly convex functions*, J. Math. Anal. Appl. 95 (1983), 344–374.

⁴[P66] B.T. Polyak, *Existence theorems and convergence of minimizing of sequences in extremum problems with constraints*, Dokl. Akad. Nauk SSSR 166 (1966), 287–290.

Of course, each of the above convexity notions has sequential variants; for example,

f is *locally uniformly convex at* $x_0 \in \text{dom } f$ if and only if⁵

 $\forall (x_n) \subset \operatorname{dom} f: \frac{1}{2}f(x_n) + \frac{1}{2}f(x_0) - f(\frac{1}{2}x_n + \frac{1}{2}x_0) \to 0 \Rightarrow x_n \to x_0;$

f is *locally uniformly convex* if it is locally uniformly convex at each $x \in \text{dom } f$.

In 1973, Vlasov⁶ introduced the following notion:

X is compactly locally uniformly convex (rotund) if (x_n) has a convergent subsequence whenever $x, x_n \in X$, $||x_n|| = ||x|| = 1$ and $||x_n + x|| \rightarrow 2$.

⁵[BV11] J.M. Borwein, J.D. Vanderwerff, *Convex Functions: Constructions, Characterizations and Counterexamples*, Cambridge University Press, 2011. ⁶[V73] L.P. Vlasov, Approximative properties of sets in normed linear spaces, Russian Math. Surveys, 28 (1973), 1–66. So, it is natural to extend this notion to convex functions; more precisely, we say that

the proper convex function $f: X \to \overline{\mathbb{R}}$ is locally uniformly convex or rotund (CLUR for short) at $x_0 \in \text{dom } f$ if $(x_n) \subset \text{dom } f$ has a convergent subsequence whenever $\frac{1}{2}f(x_n) + \frac{1}{2}f(x_0) - f(\frac{1}{2}x_n + \frac{1}{2}x_0) \to 0.$

Our aim is to characterize the previous notion and to study its relation with other notions that correspond to geometric properties of Banach spaces.

The sets $C_{\delta}f(x_0)$, $A_{\delta}^X f(x_0)$, $A_{\delta}f(x_0)$ that appear in the statement of next result are defined later on, while $\alpha(S)$ is the Hausdorff index of non-compactness of $S \subset X$.

Our main result is the following:

Theorem

Let f be continuous function at $x_0 \in \text{dom } f$. The following statements are equivalent.

(i) f is CLUR at x₀; (ii) If $x_n \in C_{1/n}f(x_0)$ for every *n*, then there exist a subsequence (x_{n_k}) and $y_0 \in C_0 f(x_0)$ such that $x_{n_k} \to y_0$; (iii) $\alpha(A_{1/n}^X f(x_0)) \rightarrow 0;$ (iv) $\alpha(A_{1/n}^X f(x_0)) \rightarrow 0;$ (v) $A_0^X f(x_0)$ is compact and for every $\varepsilon > 0$ such that $A_{1/n}^X f(x_0) \subseteq B_{\varepsilon}(A_0^X f(x_0))$ for large *n*; (vi) cl($A_0 f(x_0)$) is compact and for every $\varepsilon > 0$, there exists $n \ge 1$ such that $cl(A_{1/n}f(x_0)) \subseteq B_{\varepsilon}(A_0f(x_0))$ for large *n*; (vii) $\alpha(\operatorname{cl}(A_{1/n}f(x_0))) \to 0.$ (viii) $\alpha(A_{1/n}f(x_0)) \rightarrow 0.$

• $(X, \|\cdot\|)$ is a Banach space, $(X^*, \|\cdot\|)$ its topological dual endowed with the dual norm, $(X^{**}, \|\cdot\|) := ((X^*, \|\cdot\|))^*$ the dual of X^*

• $\langle x, x^*
angle := x^*(x)$ for $x \in X$ and $x^* \in X^*$

• $J_X : X \to X^{**}$ is the canonical isometry: $x^{**} := J_X(x) \in X^{**}$ is defined by $x^{**}(x^*) := \langle x, x^* \rangle$ for all $x^* \in X^*$; X is identified with $J_X(X) \subset X^{**}$, and so $x \in X$ and $A \subset X$ are oftenly identified with $J_X(x)$ and $J_X(A)$, respectively

•
$$\langle x^*, x \rangle := \langle x^*, J_X(x) \rangle$$
 for $x \in X$ and $x^* \in X^*$

• S_X , B_X , U_X the unit sphere, unit open ball, unit closed ball of X

•
$$w := \sigma(X, X^*) \ (\subset \tau_{\|\cdot\|}), \ w^* := \sigma(X^*, X) \ (\subset \sigma(X^*, X^{**}))$$

• For $A \subset X$: $cl_{w^*} A$ is the w^* -closure of A in X^{**} , \overline{A} is norm-closure of A in X; int A is the norm-interior of A

- For $A \subset X$ or $A \subset X^{**}$, cl A is the norm-closure of A in X^{**} .
- $\mathcal{F}_E := \{F \subset E \mid F \text{ is finite}\}, \text{ where } E \text{ is a set.}$

• $\alpha(A) := \inf\{r > 0 \mid \exists E \in \mathcal{F}_X : A \subset E_r := E + rB_X\} \in [0, \infty]$ (with $\inf \emptyset := \infty$), the Hausdorff index of noncompactness of $\emptyset \neq A \subset X$

•
$$A_n \rightarrow^{H^+} A$$
 for $\emptyset \neq A, A_n \subset X \ (n \ge 1)$ if $\forall r > 0, \exists n_r \ge 1, \forall n \ge n_r : A_n \subset A + rB_X$

Consider $f: X \to \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$

• dom $f := \{x \in X \mid f(x) < \infty\}$, the domain of f; f is proper if dom $f \neq \emptyset$ and $f(x) \neq -\infty$ for every $x \in X$

• $\Lambda(X) := \{f : X \to \overline{\mathbb{R}} \mid f \text{ is proper and convex}\}$

•
$$\Gamma(X) := \{ f \in \Lambda(X) \mid f \text{ is l.s.c.} \}$$

• $f^*: X^* \to \overline{\mathbb{R}}$ is the conjugate of f; $f^*(x^*) := \sup\{\langle x, x^* \rangle - f(x) \mid x \in X\}; f^* \text{ is convex and } w^*\text{-lsc}$

• $\partial_{\varepsilon}f(x_0) := \{x^* \in X^* \mid \forall x \in X : \langle x - x_0, x^* \rangle \le f(x) - f(x_0) + \varepsilon\}$ if $f(x_0) \in \mathbb{R}$, $\varepsilon \in \mathbb{R}_+ := [0, \infty[, \partial_{\varepsilon}f(x_0) := \emptyset \text{ if } f(x_0) \notin \mathbb{R}$, the ε -subdifferential of f at x_0 ; $\partial_{\varepsilon}f(x_0)$ is w^* -closed and convex; $\partial f(x_0) := \partial_0 f(x_0)$

• $\partial_{\varepsilon} f^*(x_0^*) \subset X^{**}; \ \partial_{\varepsilon}^X f^*(x_0^*) := X \cap \partial_{\varepsilon} f^*(x_0^*)$

• $\iota_E : F \to \overline{\mathbb{R}}, \, \iota_E(u) := 0$ if $u \in E, \, \iota_E(u) := \infty$ if $u \in F \setminus E$ is the indicator function of $E \subset F$

The next result, concerning the Hausdorff index of non-compactness, is needed in some proofs. Notice that in the definition of $\alpha(A)$, as well as in statements and proofs, one may equivalently replace B_X by U_X .

Proposition HIN

([CSZ07, Props. 2.2, 2.3]^{*a*}) Let (C_n) be a sequence of nonempty closed subsets of X satisfying the condition $C_{n+1} \subseteq C_n$ for all n and let $C = \bigcap_{n=1}^{\infty} C_n$. Consider the following assertions:

(i) every sequence (x_n) with $x_n \in C_n$, $n \in \mathbb{N}$, has a convergent subsequence;

(ii) C is nonempty compact and C_n→^{H+} C.
(iii) there exists a compact set E ⊂ X such that C_n→^{H+} E.
(iv) α(C_n) → 0 as n → ∞.
(v) diam(C_n) → 0.
(vi) ∀(x_n) ⊂ (C_n), ∃x ∈ X : x_n → x.
Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇔ (vi). If C is a singleton, then (iv) ⇔ (v).

^a[CSZ07] A. K. Chakrabarty, P. Shunmugaraj, C. Z., Continuity properties for the subdifferential and ε -subdifferential of a convex function and its conjugate, J. Convex Anal., 14 (2007), 479–514.

Characterizations of CLUR functions in terms of sub-differentials

In the sequel X is a Banach space and $f \in \Gamma(X)$.

Definition

(i) The function f is said to be *locally uniformly convex* or *locally uniformly rotund* (LUR, in short) at x₀ ∈ dom f, if x_n → x₀ whenever x_n ∈ dom f and ½f(x_n) + ½f(x₀) - f(½x_n + ½x₀) → 0;
(ii) f is called *compactly locally uniformly convex* or *compactly locally uniformly rotund* (CLUR, in short) at x₀ ∈ dom f, if (x_n) has a convergent subsequence whenever (x_n) ⊂ dom f and ½f(x_n) + ½f(x₀) - f(½x_n + ½x₀) → 0;
(iii) f is LUR (resp., CLUR) if it is LUR (resp., CLUR) at all points of dom f.

(iv)
$$f$$
 is strictly convex at $x_0 \in \text{dom } f$ if
 $f(\frac{1}{2}x + \frac{1}{2}x_0) < \frac{1}{2}f(x_0) + \frac{1}{2}f(x)$ for all $x \in \text{dom } f \setminus \{x_0\}$.

Some properties of strict convexity at a point

It follows easily that f is strictly convex iff f is strictly convex at all points of dom f.

For $x_0 \in \text{dom } f$ and $\delta \in \mathbb{R}_+$ consider the set

$$C_{\delta}f(x_0) := \{ y \in \text{dom}\, f : f(\frac{1}{2}x_0 + \frac{1}{2}y) \ge \frac{1}{2}f(x_0) + \frac{1}{2}f(y) - \delta \} \ (\ni x_0);$$

one has

f is strictly convex at
$$x_0 \Leftrightarrow C_0 f(x_0) = \{x_0\}.$$

Fact A

Assume that f is continuous at $x_0 \in \text{dom } f$ and consider $(\delta_n)_{n\geq 1} \subset \mathbb{R}_+$ with $\delta_n \to \delta$ and $x_n \in C_{\delta_n} f(x_0)$ for $n \geq 1$. If $x_n \to y$, then $y \in C_{\delta} f(x_0)$. Consequently, $C_{\delta} f(x_0)$ is closed for every $\delta \in \mathbb{R}_+$. Moreover, if $\delta = 0$, then $f(x_n) \to f(y) = 2f(\frac{1}{2}x_0 + \frac{1}{2}y) - f(x_0)$.

Fact B

Having $x_0, x_1 \in \text{dom } f$, set $x_\lambda := (1 - \lambda)x_0 + \lambda x_1$.

(i)
$$x^* \in \partial f(x_0) \Leftrightarrow x_0 \in \arg\min(f - x^*);$$

(ii) if $x^* \in \partial f(x_0) \cap \partial f(x_1)$, then $x^* \in \partial f(x_\lambda)$ and
 $f(x_\lambda) = (1 - \lambda)f(x_0) + \lambda f(x_1)$ for every $\lambda \in [0, 1];$
(iii) if $\lambda_0 \in]0, 1[$ is such that $f(x_{\lambda_0}) = (1 - \lambda_0)f(x_0) + \lambda_0 f(x_1),$
then $\partial f(x_\lambda) = \partial f(x_0) \cap \partial f(x_1)$ for all $\lambda \in]0, 1[.$

Fact C

Let $x_0 \in \text{dom } f$, and consider the following conditions:

(i) f is strictly convex at x_0 ; (ii) $\partial f(x) \cap \partial f(x_0) = \emptyset$ for all $x \in \text{dom } f \setminus \{x_0\}$; (iii) $\partial f(x) \cap \partial f(x_0) = \emptyset$ for all $x \in \text{int}(\text{dom } f) \setminus \{x_0\}$. Then (i) \Rightarrow (ii) \Rightarrow (iii); moreover, if f is continuous at x_0 , then (iii) \Rightarrow (i). Recall that $\partial_{\delta} f^*(x^*) \subset X^{**}$ and $\partial_{\delta}^X f^*(x^*) := X \cap \partial_{\delta} f^*(x^*)$ for $x^* \in \text{dom } f^*$ and $\delta \ge 0$, X being identified with $J_X(X)$. Set

$$A^X_{\delta}f(x_0) := \cup \{\partial^X_{\delta}f^*(x^*) \mid x^* \in \partial_{\delta}f(x_0) \cap \operatorname{Im} \partial f\};$$

because $\partial_0 f(x_0) = \partial f(x_0)$, one obviously has

$$\partial f(x_0) \neq \emptyset \Leftrightarrow x_0 \in A_0^X f(x_0) \Leftrightarrow A_0^X f(x_0) \neq \emptyset.$$

Fact D

Let $x_0 \in \text{dom } f$ and $\delta \ge 0$. TFAH:

(i)
$$A_{\delta}^{X}f(x_{0}) \subset C_{\delta}f(x_{0});$$

(ii) Assume that f is continuous at $x_0 \in \text{dom } f$. Then $C_{\delta/2}f(x_0) \subset A_{\delta}^X f(x_0)$; consequently

$$egin{aligned} \mathcal{C}_{\delta/2}f(x_0) \subset \mathcal{A}_{\delta}^Xf(x_0) \subset \operatorname{cl}\mathcal{A}_{\delta}^Xf(x_0) \subset \mathcal{C}_{\delta}f(x_0), \ \mathcal{C}_0f(x_0) &= \mathcal{A}_0^Xf(x_0) = \operatorname{cl}\mathcal{A}_0^Xf(x_0), \end{aligned}$$

Because $f \in \Gamma(X)$, for $x^* \in \text{dom } f^*$, also $\partial_{\delta}^X f^*(x^*)$ is closed for $\delta \ge 0$ and nonempty for $\delta > 0$. Clearly, $\partial_{\delta} f^*(x^*) \subset \partial_{\delta'} f^*(x^*)$ for $0 \le \delta < \delta'$, and similarly $C_{\delta} f(x_0) \subset C_{\delta'} f(x_0)$ for $x_0 \in \text{dom } f$. It follows that for every sequence $(\delta_n)_{n\ge 1} \subset \mathbb{P} := (0,\infty)$ with $\delta_n \to 0$, one has

$$\lim_{0<\delta\to 0} \alpha \left(\partial_{\delta} f^{*}(x^{*})\right) = 0 \Leftrightarrow \alpha \left(\partial_{\delta_{n}} f^{*}(x^{*})\right) \to 0,$$

$$\lim_{0<\delta\to 0} \alpha \left(\partial_{\delta}^{X} f^{*}(x^{*})\right) = 0 \Leftrightarrow \alpha \left(\partial_{\delta_{n}}^{X} f^{*}(x^{*})\right) \to 0,$$

$$\lim_{0<\delta\to 0} \alpha \left(C_{\delta} f(x_{0})\right) = 0 \Leftrightarrow \alpha \left(C_{\delta_{n}} f(x_{0})\right) \to 0,$$

$$\partial f^{*}(x^{*}) = \cap_{n\geq 1} \partial_{\delta_{n}} f^{*}(x^{*}),$$

$$\partial^{X} f^{*}(x^{*}) = \cap_{n\geq 1} \partial_{\delta_{n}}^{X} f^{*}(x^{*}),$$

$$C_{0} f(x_{0}) = \cap_{n\geq 1} C_{\delta_{n}} f(x_{0})$$

The next result is strongly related to Theorem 5.19 from [CSZ07].

Fact E

Let $x^* \in \text{dom } f^*$, and consider the following assertions:

(i)
$$\lim_{0 < \delta \to 0} \alpha \left(\partial_{\delta}^{X} f^{*}(x^{*}) \right) = 0;$$

(ii) $\lim_{0 < \delta \to 0} \alpha \left(\partial_{\delta} f^{*}(x^{*}) \right) = 0;$
(iii) $\partial^{X} f^{*}(x^{*})$ is nonempty, compact and $\partial_{1/n} f^{*}(x^{*}) \to^{H^{+}} \partial^{X} f^{*}(x^{*});$
(iv) $\partial f^{*}(x^{*})$ is nonempty, compact and $\partial_{1/n} f^{*}(x^{*}) \to^{H^{+}} \partial f^{*}(x^{*})$
in $X^{**};$
(v) $\partial f^{*}(x^{*})$ is a nonempty compact subset of X and $\partial_{1/n} f^{*}(x^{*}) \to^{H^{+}} \partial f^{*}(x^{*})$ (in X^{**});
(vi) $\partial f^{*}(x^{*})$ is a nonempty compact subset of X.

Then (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v) \Rightarrow (vi).

Concerning the proof, observe that: (i) \Leftrightarrow (iii) and (ii) \Leftrightarrow (iv) follow immediately from the equivalence (i) \Leftrightarrow (iv) of Proposition HIN because the mapping $0 < \delta \mapsto \partial_{\delta} f^*(x^*)$ is increasing; (ii) \Rightarrow (i) is obvious because $\partial_{\delta}^{X} f^*(x^*) \subset \partial_{\delta} f^*(x^*)$ for $\delta \ge 0$; (v) \Rightarrow (iv) and (v) \Rightarrow (vi) are obvious.

The most involved is the implication (i) \Rightarrow (v). For this one apply [CSZ07, Prop. 4.2] which states that for $f \in \Gamma(X)$, $x^* \in \text{dom } f^*$ and $\varepsilon > 0$ one has that $\partial_{\varepsilon} f^*(x^*) = \text{cl}_{w^*} \partial_{\varepsilon}^X f^*(x^*)$.

Notice that the equivalence of conditions (i), (ii) and (iii) from Fact E are established in [CSZ07, Th. 5.19] under the supplementary hypothesis that $x^* \in int(dom f^*)$.

The following result is a counterpart of [SV18, Th. 3.3];⁷ as already said, it is our main result.

⁷[SV18] P. Shunmugaraj, V. Thota, *Some geometric and proximinality* properties in Banach spaces, J. Convex Anal., 25 (2018), 1139-1158.

Theorem M

Let f be continuous function at $x_0 \in \text{dom } f$. The following statements are equivalent.

(i) f is CLUR at x_0 ; (ii) If $x_n \in C_{1/n}f(x_0)$ for every *n*, then there exist a subsequence (x_{n_k}) and $y_0 \in C_0 f(x_0)$ such that $x_{n_k} \to y_0$; (iii) $\alpha(A_{1/n}^X f(x_0)) \rightarrow 0;$ (iv) $\alpha(A_{1/n}^X f(x_0)) \rightarrow 0;$ (v) $A_0^X f(x_0)$ is compact and $\overline{A_{1/n}^X f(x_0)} \rightarrow^{H^+} A_0^X f(x_0)$; (vi) cl($A_0f(x_0)$) is compact and cl($A_{1/n}f(x_0)$) $\rightarrow^{H^+} A_0f(x_0)$; (vii) $\alpha(\operatorname{cl}(A_{1/n}f(x_0))) \to 0.$ (viii) $\alpha(A_{1/n}f(x_0)) \rightarrow 0.$

Sketch of the proof (in which we omit $f(x_0)$):

First observe that for every sequence $(\delta_n) \subset \mathbb{P}$ with $\delta_n \to 0$, one has

$$f \text{ is CLUR at } x_0 \Leftrightarrow [\forall (x_n) \subseteq (C_{\delta_n}) : \exists (x_{n_k}) \to x \in X] \\ \Leftrightarrow \forall (x_n) \subseteq (C_{1/n}) : \exists (x_{n_k}) \to x \in X, \\ C_0 = \cap_{n \ge 1} C_{1/n} = \cap_{n \ge 1} C_{\delta_n} \\ = \cap_{n \ge 1} A_{1/n}^X = \cap_{n \ge 1} A_{\delta_n}^X = \cap_{n \ge 1} \overline{A_{1/n}^X} = \cap_{n \ge 1} \overline{A_{\delta_n}^X} = A_0^X.$$

(i) \Leftrightarrow (ii) is nothing else than the the first equivalence above. (iii) \Leftrightarrow (iv) and (vii) \Leftrightarrow (iii) because $\alpha(A) = \alpha(\overline{A})$ in a metric space;

clearly, (ii) \Leftrightarrow (ii') by (i) \Leftrightarrow (iv) in Proposition HIN, where (ii') $\alpha(C_{1/n}) \rightarrow 0$; (ii') \Leftrightarrow (iii) by Fact D; (iv) \Leftrightarrow (v) by (i) \Leftrightarrow (ii) in Proposition HIN and the equalities $C_0 = \bigcap_{n \ge 1} C_{1/n} = ...$ above; (viii) \Rightarrow (iii) because $A_{\delta}^X \subseteq A_{\delta}$ for $\delta \in \mathbb{R}_+$. (v) \Rightarrow (vi) Fix $\varepsilon > 0$; by hypothesis, there exists $n_0 \in \mathbb{N}^*$ such that

$$\operatorname{cl} A_{\delta}^{X} \subseteq A_{0}^{X} + \varepsilon U_{X} \subseteq A_{0}^{X} + \varepsilon U_{X^{**}},$$

where $\delta := 1/n_0 > 0$. Consider $y^{**} \in A_{\delta}$; then there exists $x^* \in \partial_{\delta} f(x_0) \cap \operatorname{Im} \partial f$ such that $y^{**} \in \partial_{\delta} f^*(x^*)$. One continues using [CSZ07, Prop. 4.2] as in the proof of Fact E, one gets $\operatorname{cl} A_0 \subset A_0^X \subset A_0$, and so $A_0 = A_0^X = \bigcap_{n \ge 1} \operatorname{cl} A_{1/n}$. (vi) \Rightarrow (vii) Because $\operatorname{cl}(A_{1/n}f(x_0)) \rightarrow^{H^+} A_0f(x_0)$, one has $\operatorname{cl}(A_{1/n}f(x_0)) \rightarrow^{H^+} \operatorname{cl}(A_0f(x_0))$; as $\operatorname{cl}(A_0f(x_0))$ is compact, one has also $\operatorname{cl}(A_{1/n}f(x_0)) \rightarrow^{H^+} \operatorname{cl}(A_0f(x_0))$. One applies now the implication (iii) \Rightarrow (iv) from Proposition HIN

From Theorem M one obtains immediately the next corollary

Corollary F

Let f be be continuous at $x_0 \in \text{dom } f$.

(i) If f is CLUR at x_0 then $A_0 f(x_0) = A_0^X f(x_0)$ and so $A_0 f(x_0)$ is non-empty and compact.

(ii) f is LUR at $x_0 \Leftrightarrow [f \text{ is CLUR at } x_0 \text{ and } C_0 = \{x_0\}]$ $\Leftrightarrow f \text{ is CLUR at } x_0 \& f \text{ is strictly convex at } x_0].$

Definition

Let $x_0 \in \text{dom } f$; f is said to be:

(i) strongly convex at x_0 , if $\partial f(x_0) \neq \emptyset$ and (x_n) converges whenever $(f - x^*)(x_n) \rightarrow (f - x^*)(x_0)$ and $x^* \in \partial f(x_0)$.

(ii) nearly strongly convex at x_0 , if $\partial f(x_0) \neq \emptyset$ and (x_n) has a convergent subsequence whenever $(f - x^*)(x_n) \rightarrow (f - x^*)(x_0)$ and $x^* \in \partial f(x_0)$.

(iii) U-convex at x_0 if for every sequence (x_n) in dom f satisfying $\frac{1}{2}f(x_n) + \frac{1}{2}f(x_0) - f(\frac{1}{2}x_n + \frac{1}{2}x_0) \rightarrow 0$ there exists $x^* \in \partial f(x_0)$ such that $(f - x^*)(x_n) \rightarrow (f - x^*)(x_0)$.

(iv) nearly U-convex at x_0 if for every sequence (x_n) in dom f satisfying $\frac{1}{2}f(x_n) + \frac{1}{2}f(x_0) - f(\frac{1}{2}x_n + \frac{1}{2}x_0) \rightarrow 0$, there exists $x^* \in \partial f(x_0)$ and a subsequence (x_{n_k}) such that $(f - x^*)(x_{n_k}) \rightarrow (f - x^*)(x_0)$.

くロ と く 同 と く ヨ と 一

э

Proposition H

Let $x_0 \in \text{dom } f$ and $\partial f(x_0) \neq \emptyset$. Consider the following statements. (i) f is nearly strongly convex at x_0 . (ii) $\alpha(L(x^*, f, x_0, \frac{1}{n})) \to 0$ for every $x^* \in \partial f(x_0)$. (iii) $\alpha(\partial_{\underline{1}}^{X}f^{*}(x^{*})) \to 0$ for every $x^{*} \in \partial f(x_{0})$. $(iv)\alpha(\partial_{\underline{1}}f^*(x^*)) \to 0$ for every $x^* \in \partial f(x_0)$. (v) $\partial^X f^*(x^*)$ is compact and f^* is strongly sub-differentiable at every $x^* \in \partial f(x_0)$. Then (i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv). If $\partial f(x_0) \subset$ int(dom f^*) then $(iv) \Leftrightarrow (v).$

Thank you for your attention!

