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Motivation

Let (X , ‖·‖) be a real Banach space; one says that:

X is uniformly convex (rotund) if

∀ ε > 0, ∃ δ > 0, ∀ x , y ∈ SX : ‖y − x‖ ≥ ε⇒
∥∥1

2 (x + y)
∥∥ ≤ 1−δ,

X is locally uniformly convex (rotund) if

∀ x ∈ SX , ∀ ε > 0, ∃ δ > 0, ∀ y ∈ SX :

‖y − x‖ ≥ ε⇒
∥∥1

2 (x + y)
∥∥ ≤ 1− δ.

We may continue with

X is locally uniformly convex (rotund) at x0 ∈ SX if

∀ ε > 0, ∃ δ > 0, ∀ x ∈ SX : ‖x − x0‖ ≥ ε⇒
∥∥1

2 (x + x0)
∥∥ ≤ 1−δ.
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The sequential characterizations:

X is uniformly convex (UC) if and only if

∀(xn), (yn) ⊂ SX :
∥∥1

2 (xn + yn)
∥∥→ 1⇒ ‖xn − yn‖ → 0;

X is locally uniformly convex (LUR) if and only if

∀x ∈ SX , ∀(xn) ⊂ SX :
∥∥1

2 (x + xn)
∥∥→ 1⇒ ‖xn − x‖ → 0;

X is LUR at x0 ∈ SX if and only if

∀(xn) ⊂ SX :
∥∥1

2 (xn + x0)
∥∥→ 1⇒ ‖xn − x0‖ → 0.

These notions were extended to proper convex functions.
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Let f : X → R be a proper convex function.

“The functional f (x) is called uniformly convex if there exists a
function δ(r), δ(r) > 0 for r > 0 (which can be assumed
monotonic), such that f ((x + y)/2) ≤ 1

2 (f (x) + f (y))− δ(‖x − y‖)
for all x , y”;2 equivalently,

∀ε > 0, ∃ δ > 0, ∀ x , y ∈ dom f :

‖x − y‖ ≥ ε ⇒ f ( 1
2x + 1

2y) ≤ 1
2 f (x) + 1

2 f (y)− δ;

f is locally uniformly convex (LUC or LUR) if

∀x ∈ dom f , ∀ ε > 0, ∃ δ > 0, ∀ y ∈ dom f :

‖x − y‖ ≥ ε ⇒ f ( 1
2x + 1

2y) ≤ 1
2 f (x) + 1

2 f (y)− δ;

2[LP66] E.S. Levitin, B.T. Polyak, Convergence of minimizing of sequences
in the conditional-extremum problem, Dokl. Akad. Nauk SSSR 168 (1966),
997–1000.
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f is locally uniformly convex at x0 ∈ dom f if3

∀ ε > 0, ∃ δ > 0, ∀ x ∈ dom f :

‖x − x0‖ ≥ ε ⇒ f ( 1
2x + 1

2x0) ≤ 1
2 f (x) + 1

2 f (x0)− δ.

We may add the strongest convexity notion (possibly, inspired by
the parallelogram law):

“A functional f (x) is said to be strongly convex if there exists a
γ > 0 such that f ((x + y)/2) ≤ 1

2 (f (x) + f (y))− 1
4γ ‖x − y‖2 for

all x , y”.4

3[Z83] C. Z., On uniformly convex functions, J. Math. Anal. Appl. 95
(1983), 344–374.

4[P66] B.T. Polyak, Existence theorems and convergence of minimizing of
sequences in extremum problems with constraints, Dokl. Akad. Nauk SSSR
166 (1966), 287–290.
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Of course, each of the above convexity notions has sequential
variants; for example,

f is locally uniformly convex at x0 ∈ dom f if and only if5

∀(xn) ⊂ dom f : 1
2 f (xn) + 1

2 f (x0)− f ( 1
2xn + 1

2x0)→ 0⇒ xn → x0;

f is locally uniformly convex if it is locally uniformly convex at
each x ∈ dom f .

In 1973, Vlasov6 introduced the following notion:

X is compactly locally uniformly convex (rotund) if (xn) has a
convergent subsequence whenever x , xn ∈ X , ‖xn‖ = ‖x‖ = 1 and
‖xn + x‖ → 2.

5[BV11] J.M. Borwein, J.D. Vanderwerff, Convex Functions: Constructions,
Characterizations and Counterexamples, Cambridge University Press, 2011.

6[V73] L.P. Vlasov, Approximative properties of sets in normed linear
spaces, Russian Math. Surveys, 28 (1973), 1–66.
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So, it is natural to extend this notion to convex functions; more
precisely, we say that

the proper convex function f : X → R is locally uniformly convex
or rotund (CLUR for short) at x0 ∈ dom f if (xn) ⊂ dom f has a
convergent subsequence whenever
1
2 f (xn) + 1

2 f (x0)− f ( 1
2xn + 1

2x0)→ 0.

Our aim is to characterize the previous notion and to study its
relation with other notions that correspond to geometric properties
of Banach spaces.

The sets Cδf (x0), AX
δ f (x0), Aδf (x0) that appear in the statement

of next result are defined later on, while α(S) is the Hausdorff
index of non-compactness of S ⊂ X .
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Our main result is the following:

Theorem

Let f be continuous function at x0 ∈ dom f . The following
statements are equivalent.

(i) f is CLUR at x0;

(ii) If xn ∈ C1/nf (x0) for every n, then there exist a subsequence
(xnk ) and y0 ∈ C0f (x0) such that xnk → y0;

(iii) α(AX
1/nf (x0))→ 0;

(iv) α(AX
1/nf (x0))→ 0;

(v) AX
0 f (x0) is compact and for every ε > 0 such that

AX
1/nf (x0) ⊆ Bε(A

X
0 f (x0)) for large n;

(vi) cl(A0f (x0)) is compact and for every ε > 0, there exists n ≥ 1
such that cl(A1/nf (x0)) ⊆ Bε(A0f (x0)) for large n;

(vii) α(cl(A1/nf (x0)))→ 0.

(viii) α(A1/nf (x0))→ 0.

Of course, the sets Cδf (x0), AX
δ f (x0), Aδf (x0) are defined in the

sequel and α(S) is the Hausdorff index of measure of
non-compactness of S ⊂ X .
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Notations and preliminary results

• (X , ‖·‖) is a Banach space, (X ∗, ‖·‖) its topological dual
endowed with the dual norm, (X ∗∗, ‖·‖) := ((X ∗, ‖·‖))∗ the dual of
X ∗

• 〈x , x∗〉 := x∗(x) for x ∈ X and x∗ ∈ X ∗

• JX : X → X ∗∗ is the canonical isometry: x∗∗ := JX (x) ∈ X ∗∗ is
defined by x∗∗(x∗) := 〈x , x∗〉 for all x∗ ∈ X ∗; X is identified with
JX (X ) ⊂ X ∗∗, and so x ∈ X and A ⊂ X are oftenly identified with
JX (x) and JX (A), respectively

• 〈x∗, x〉 := 〈x∗, JX (x)〉 for x ∈ X and x∗ ∈ X ∗

• SX , BX , UX the unit sphere, unit open ball, unit closed ball of X

• w := σ(X ,X ∗) (⊂ τ‖·‖), w∗ := σ(X ∗,X ) (⊂ σ(X ∗,X ∗∗))
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• For A ⊂ X : clw∗ A is the w∗-closure of A in X ∗∗, A is
norm-closure of A in X ; intA is the norm-interior of A

• For A ⊂ X or A ⊂ X ∗∗, clA is the norm-closure of A in X ∗∗.

• FE := {F ⊂ E | F is finite}, where E is a set.

• α(A) := inf{r > 0 | ∃E ∈ FX : A ⊂ Er := E + rBX} ∈ [0,∞]
(with inf ∅ :=∞), the Hausdorff index of noncompactness of
∅ 6= A ⊂ X

• An →H+
A for ∅ 6= A,An ⊂ X (n ≥ 1) if ∀r > 0, ∃nr ≥ 1,

∀n ≥ nr : An ⊂ A + rBX

Consider f : X → R := R ∪ {−∞,∞}

• dom f := {x ∈ X | f (x) <∞}, the domain of f ; f is proper if
dom f 6= ∅ and f (x) 6= −∞ for every x ∈ X
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• Λ(X ) := {f : X → R | f is proper and convex}

• Γ(X ) := {f ∈ Λ(X ) | f is l.s.c.}

• f ∗ : X ∗ → R is the conjugate of f ;
f ∗(x∗) := sup{〈x , x∗〉 − f (x) | x ∈ X}; f ∗ is convex and w∗-lsc

• ∂εf (x0) := {x∗ ∈ X ∗ | ∀x ∈ X : 〈x − x0, x
∗〉 ≤ f (x)− f (x0) + ε}

if f (x0) ∈ R, ε ∈ R+ := [0,∞[, ∂εf (x0) := ∅ if f (x0) /∈ R, the
ε-subdifferential of f at x0; ∂εf (x0) is w∗-closed and convex;
∂f (x0) := ∂0f (x0)

• ∂εf ∗(x∗0 ) ⊂ X ∗∗; ∂Xε f
∗(x∗0 ) := X ∩ ∂εf ∗(x∗0 )

• ιE : F → R, ιE (u) := 0 if u ∈ E , ιE (u) :=∞ if u ∈ F \ E is the
indicator function of E ⊂ F

The next result, concerning the Hausdorff index of
non-compactness, is needed in some proofs. Notice that in the
definition of α(A), as well as in statements and proofs, one may
equivalently replace BX by UX .
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Proposition HIN

([CSZ07, Props. 2.2, 2.3]a) Let (Cn) be a sequence of nonempty
closed subsets of X satisfying the condition Cn+1 ⊆ Cn for all n
and let C = ∩∞n=1Cn. Consider the following assertions:

(i) every sequence (xn) with xn ∈ Cn, n ∈ N, has a convergent
subsequence;

(ii) C is nonempty compact and Cn →H+
C .

(iii) there exists a compact set E ⊂ X such that Cn →H+
E .

(iv) α(Cn)→ 0 as n→∞.

(v) diam(Cn)→ 0.

(vi) ∀(xn) ⊂ (Cn), ∃x ∈ X : xn → x .

Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇐ (v) ⇔ (vi). If C is a singleton,
then (iv) ⇔ (v).

a[CSZ07] A. K. Chakrabarty, P. Shunmugaraj, C. Z., Continuity properties
for the subdifferential and ε-subdifferential of a convex function and its
conjugate, J. Convex Anal., 14 (2007), 479–514.
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Characterizations of CLUR functions in terms of
sub-differentials

In the sequel X is a Banach space and f ∈ Γ(X ).

Definition

(i) The function f is said to be locally uniformly convex or locally
uniformly rotund (LUR, in short) at x0 ∈ dom f , if xn → x0

whenever xn ∈ dom f and 1
2 f (xn) + 1

2 f (x0)− f ( 1
2xn + 1

2x0)→ 0;

(ii) f is called compactly locally uniformly convex or compactly
locally uniformly rotund (CLUR, in short) at x0 ∈ dom f , if (xn)
has a convergent subsequence whenever (xn) ⊂ dom f and
1
2 f (xn) + 1

2 f (x0)− f ( 1
2xn + 1

2x0)→ 0;

(iii) f is LUR (resp., CLUR) if it is LUR (resp., CLUR) at all points
of dom f .

(iv) f is strictly convex at x0 ∈ dom f if
f ( 1

2x + 1
2x0) < 1

2 f (x0) + 1
2 f (x) for all x ∈ dom f \ {x0}.
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Some properties of strict convexity at a point

It follows easily that f is strictly convex iff f is strictly convex at all
points of dom f .

For x0 ∈ dom f and δ ∈ R+ consider the set

Cδf (x0) := {y ∈ dom f : f ( 1
2x0+ 1

2y) ≥ 1
2 f (x0)+ 1

2 f (y)−δ} (3 x0);

one has

f is strictly convex at x0 ⇔ C0f (x0) = {x0}.

Fact A

Assume that f is continuous at x0 ∈ dom f and consider
(δn)n≥1 ⊂ R+ with δn → δ and xn ∈ Cδn f (x0) for n ≥ 1. If
xn → y , then y ∈ Cδf (x0). Consequently, Cδf (x0) is closed for
every δ ∈ R+. Moreover, if δ = 0, then
f (xn)→ f (y) = 2f ( 1

2x0 + 1
2y)− f (x0).
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Fact B

Having x0, x1 ∈ dom f , set xλ := (1− λ)x0 + λx1.

(i) x∗ ∈ ∂f (x0)⇔ x0 ∈ arg min(f − x∗);

(ii) if x∗ ∈ ∂f (x0) ∩ ∂f (x1), then x∗ ∈ ∂f (xλ) and
f (xλ) = (1− λ)f (x0) + λf (x1) for every λ ∈ [0, 1];

(iii) if λ0 ∈ ]0, 1[ is such that f (xλ0) = (1− λ0)f (x0) + λ0f (x1),
then ∂f (xλ) = ∂f (x0) ∩ ∂f (x1) for all λ ∈ ]0, 1[.

Fact C

Let x0 ∈ dom f , and consider the following conditions:

(i) f is strictly convex at x0;

(ii) ∂f (x) ∩ ∂f (x0) = ∅ for all x ∈ dom f \ {x0};
(iii) ∂f (x) ∩ ∂f (x0) = ∅ for all x ∈ int(dom f ) \ {x0}.
Then (i) ⇒ (ii) ⇒ (iii); moreover, if f is continuous at x0, then
(iii) ⇒ (i).
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Recall that ∂δf
∗(x∗) ⊂ X ∗∗ and ∂Xδ f

∗(x∗) := X ∩ ∂δf ∗(x∗) for
x∗ ∈ dom f ∗ and δ ≥ 0, X being identified with JX (X ). Set

AX
δ f (x0) := ∪{∂Xδ f ∗(x∗) | x∗ ∈ ∂δf (x0) ∩ Im ∂f };

because ∂0f (x0) = ∂f (x0), one obviously has

∂f (x0) 6= ∅ ⇔ x0 ∈ AX
0 f (x0)⇔ AX

0 f (x0) 6= ∅.

Fact D

Let x0 ∈ dom f and δ ≥ 0. TFAH:

(i) AX
δ f (x0) ⊂ Cδf (x0);

(ii) Assume that f is continuous at x0 ∈ dom f . Then
Cδ/2f (x0) ⊂ AX

δ f (x0); consequently

Cδ/2f (x0) ⊂ AX
δ f (x0) ⊂ clAX

δ f (x0) ⊂ Cδf (x0),

C0f (x0) = AX
0 f (x0) = clAX

0 f (x0),
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Because f ∈ Γ(X ), for x∗ ∈ dom f ∗, also ∂Xδ f
∗(x∗) is closed for

δ ≥ 0 and nonempty for δ > 0. Clearly, ∂δf
∗(x∗) ⊂ ∂δ′f ∗(x∗) for

0 ≤ δ < δ′, and similarly Cδf (x0) ⊂ Cδ′f (x0) for x0 ∈ dom f . It
follows that for every sequence (δn)n≥1 ⊂ P := (0,∞) with
δn → 0, one has

lim
0<δ→0

α (∂δf
∗(x∗)) = 0⇔ α (∂δn f

∗(x∗))→ 0,

lim
0<δ→0

α
(
∂Xδ f

∗(x∗)
)

= 0⇔ α
(
∂Xδn f

∗(x∗)
)
→ 0,

lim
0<δ→0

α (Cδf (x0)) = 0⇔ α (Cδn f (x0))→ 0,

∂f ∗(x∗) = ∩n≥1∂δn f
∗(x∗),

∂X f ∗(x∗) = ∩n≥1∂
X
δn f
∗(x∗),

C0f (x0) = ∩n≥1Cδn f (x0)

The next result is strongly related to Theorem 5.19 from [CSZ07].
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Fact E

Let x∗ ∈ dom f ∗, and consider the following assertions:

(i) lim0<δ→0 α
(
∂Xδ f

∗(x∗)
)

= 0;

(ii) lim0<δ→0 α (∂δf
∗(x∗)) = 0;

(iii) ∂X f ∗(x∗) is nonempty, compact and
∂X1/nf

∗(x∗)→H+
∂X f ∗(x∗);

(iv) ∂f ∗(x∗) is nonempty, compact and ∂1/nf
∗(x∗)→H+

∂f ∗(x∗)
in X ∗∗;

(v) ∂f ∗(x∗) is a nonempty compact subset of X and
∂1/nf

∗(x∗)→H+
∂f ∗(x∗) (in X ∗∗);

(vi) ∂f ∗(x∗) is a nonempty compact subset of X .

Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) ⇒ (vi).
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Concerning the proof, observe that: (i) ⇔ (iii) and (ii) ⇔ (iv)

follow immediately from the equivalence (i) ⇔ (iv) of Proposition
HIN because the mapping 0 < δ 7→ ∂δf

∗(x∗) is increasing;

(ii) ⇒ (i) is obvious because ∂Xδ f
∗(x∗) ⊂ ∂δf ∗(x∗) for δ ≥ 0;

(v) ⇒ (iv) and (v) ⇒ (vi) are obvious.

The most involved is the implication (i) ⇒ (v). For this one apply
[CSZ07, Prop. 4.2] which states that for f ∈ Γ(X ), x∗ ∈ dom f ∗

and ε > 0 one has that ∂εf
∗(x∗) = clw∗ ∂

X
ε f
∗(x∗).

Notice that the equivalence of conditions (i), (ii) and (iii) from
Fact E are established in [CSZ07, Th. 5.19] under the
supplementary hypothesis that x∗ ∈ int(dom f ∗).

The following result is a counterpart of [SV18, Th. 3.3];7 as
already said, it is our main result.

7[SV18] P. Shunmugaraj, V. Thota, Some geometric and proximinality
properties in Banach spaces, J. Convex Anal., 25 (2018), 1139-1158.
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Theorem M

Let f be continuous function at x0 ∈ dom f . The following
statements are equivalent.

(i) f is CLUR at x0;

(ii) If xn ∈ C1/nf (x0) for every n, then there exist a subsequence
(xnk ) and y0 ∈ C0f (x0) such that xnk → y0;

(iii) α(AX
1/nf (x0))→ 0;

(iv) α(AX
1/nf (x0))→ 0;

(v) AX
0 f (x0) is compact and AX

1/nf (x0)→H+
AX

0 f (x0);

(vi) cl(A0f (x0)) is compact and cl(A1/nf (x0))→H+
A0f (x0);

(vii) α(cl(A1/nf (x0)))→ 0.

(viii) α(A1/nf (x0))→ 0.
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Sketch of the proof (in which we omit f (x0)):

First observe that for every sequence (δn) ⊂ P with δn → 0, one
has

f is CLUR at x0 ⇔ [∀(xn) ⊆ (Cδn) : ∃(xnk )→ x ∈ X ]

⇔ ∀(xn) ⊆ (C1/n) : ∃(xnk )→ x ∈ X ,

C0 = ∩n≥1C1/n = ∩n≥1Cδn

= ∩n≥1A
X
1/n = ∩n≥1A

X
δn = ∩n≥1AX

1/n = ∩n≥1AX
δn

= AX
0 .

(i) ⇔ (ii) is nothing else than the the first equivalence above.

(iii) ⇔ (iv) and (vii) ⇔ (iii) because α(A) = α(A) in a metric
space;

clearly, (ii) ⇔ (ii’) by (i) ⇔ (iv) in Proposition HIN, where

(ii’) α(C1/n)→ 0;

(ii’) ⇔ (iii) by Fact D;
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(iv) ⇔ (v) by (i) ⇔ (ii) in Proposition HIN and the equalities
C0 = ∩n≥1C1/n = ... above;

(viii) ⇒ (iii) because AX
δ ⊆ Aδ for δ ∈ R+.

(v) ⇒ (vi) Fix ε > 0; by hypothesis, there exists n0 ∈ N∗ such that

clAX
δ ⊆ AX

0 + εUX ⊆ AX
0 + εUX∗∗ ,

where δ := 1/n0 > 0. Consider y∗∗ ∈ Aδ; then there exists
x∗ ∈ ∂δf (x0) ∩ Im ∂f such that y∗∗ ∈ ∂δf ∗(x∗).
One continues using [CSZ07, Prop. 4.2] as in the proof of Fact E,
one gets clA0 ⊂ AX

0 ⊂ A0, and so A0 = AX
0 = ∩n≥1 clA1/n.

(vi) ⇒ (vii) Because cl(A1/nf (x0))→H+
A0f (x0), one has

cl(A1/nf (x0))→H+
cl(A0f (x0)); as cl(A0f (x0)) is compact, one

has also cl(A1/nf (x0))→H+
cl(A0f (x0)). One applies now the

implication (iii) ⇒ (iv) from Proposition HIN
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From Theorem M one obtains immediately the next corollary

Corollary F

Let f be be continuous at x0 ∈ dom f .

(i) If f is CLUR at x0 then A0f (x0) = AX
0 f (x0) and so A0f (x0) is

non-empty and compact.

(ii) f is LUR at x0 ⇔ [f is CLUR at x0 and C0 = {x0}]
⇔ f is CLUR at x0 & f is strictly convex at x0].
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Convexity properties of CLUR functions

Definition

Let x0 ∈ dom f ; f is said to be:

(i) strongly convex at x0, if ∂f (x0) 6= ∅ and (xn) converges
whenever (f − x∗)(xn)→ (f − x∗)(x0) and x∗ ∈ ∂f (x0).

(ii) nearly strongly convex at x0, if ∂f (x0) 6= ∅ and (xn) has a
convergent subsequence whenever (f − x∗)(xn)→ (f − x∗)(x0)
and x∗ ∈ ∂f (x0).

(iii) U-convex at x0 if for every sequence (xn) in dom f satisfying
1
2 f (xn) + 1

2 f (x0)− f ( 1
2xn + 1

2x0)→ 0 there exists x∗ ∈ ∂f (x0) such
that (f − x∗)(xn)→ (f − x∗)(x0).

(iv) nearly U-convex at x0 if for every sequence (xn) in dom f
satisfying 1

2 f (xn) + 1
2 f (x0)− f ( 1

2xn + 1
2x0)→ 0, there exists

x∗ ∈ ∂f (x0) and a subsequence (xnk ) such that
(f − x∗)(xnk )→ (f − x∗)(x0).
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Proposition H

Let x0 ∈ dom f and ∂f (x0) 6= ∅. Consider the following statements.

(i) f is nearly strongly convex at x0.

(ii) α(L(x∗, f , x0,
1
n ))→ 0 for every x∗ ∈ ∂f (x0).

(iii) α(∂X1
n

f ∗(x∗))→ 0 for every x∗ ∈ ∂f (x0).

(iv)α(∂ 1
n
f ∗(x∗))→ 0 for every x∗ ∈ ∂f (x0).

(v) ∂X f ∗(x∗) is compact and f ∗ is strongly sub-differentiable at
every x∗ ∈ ∂f (x0).
Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv). If ∂f (x0) ⊂ int(domf ∗) then
(iv) ⇔ (v).
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Thank you for your attention!
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