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1. Introduction and previous work

Most optimization problems involve uncertain data due to mea-
surement errors, unknown future developments and modeling ap-
proximations.

In risk theory, assets are naturally affected by uncertainty due
to market changes, changing preferences of customers and un-
foreseeable events.

Consequently, it is highly important to introduce uncertain pa-
rameters to optimization problems.

(Birge, Louveaux (1997), Ben-Tal, Ghaoui, Nemirovski (2009),
Rockafellar, Royset (2013, 2015).)



In KKST (2013, 2017): Different approaches to uncertain op-
timization can be put in a unifying context using vector opti-
mization, set optimization and nonlinear scalarizing functionals,
assuming that the uncertainty set consists of finitely / infinitely
many elements.

Our goal: Employing unifying concepts for both stochastic and
robust optimization for deriving optimality conditions.

Express robust and stochastic optimization problems by using
the mentioned nonlinear scalarizing functional.

Connections to vector optimization problems in general spaces
as well as set-valued optimization (J.-P. Penot (2016): Analy-
sis. From Concepts to Applications. Springer, Chapter 1: Sets,
Orders, Relations and Measures).



2. Scalar optimization problems under uncertainty

Consider an optimization problem (Q(£)) which depends on un-
certain parameters & that belong to a given uncertainty set U:

f(x,&) — inf
s.t. Fi(z,6) <0, i=1,...,m, (Q(£))
x € R",

where f 1 R" XU - R, F; :R"xU —- R, 1=1,...,m.

X&) ={x e R"| Fi(x,6) <0, i =1,....m}. U # 0 is a not
necessarily finite set, X(&) = 0 for all £ e U.

An uncertain optimization problem P(U) is defined as a family
of parametrized optimization problems

(Q(&), & € U). (1)



Two approaches regarding uncertain optimization problems:

e Stochastic Optimization: This idea goes back to Dantzig
(1955). Stochastic optimization assumes that the uncertain
parameter is probabilistic. Usually, one optimizes some cost
function using the expected value of the uncertain parameter
(cf. Birge, Louveaux (1997)).

e Robust Optimization: Robustness, pursues a distinctively dif-
ferent approach to optimization problems with uncertainties
not relying on a probability distribution but only using the
uncertainty set. Typically, one wishes to optimize the worst-
case scenario (strict robustness: Ben-Tal, Ghaoui, Nemirovski
(2009)).



Example 1 (Uncertain linear optlmlzatlon problem) Consider

fx, &) = c(&)x, z € R”, c(¢) = O+ L 1ch ¢ R, i =
0,.. LU—{£€R|—1<§z§1 i=1,...,L}. To solve

(® + Z g&ic) @ — inf (Q(8))

i—1 reR"?

Strictly robust solution. Minimize the worst-case objective func-
tion, i.e.,

su Ny 5 inf .
gez?l(c * Zlfz ) zER™

Minimizing the expectation. In the case a probability distribution
over U is known: Minimize the expected objective value, i.e.,

E(c° 4+ Z &) 'e — inf .

i—1 TR



3. Three unifying concepts for uncertain optimization
3.1 Vector optimization as unifying concept

Idea: To generalize the approach for finite uncertainty sets: Let
U= {&1,...,¢}. Then, for each scenario, we can introduce an
objective function. For some point z, we then obtain a vector
F; € RLY which contains f(x,¢&;) in its ith coordinate.

KKST (2013): Robust solutions can be characterized in terms
of multiobjective optimization for many robustness concepts.

KKST (2017): U is not a finite set, we obtain not vectors F;
but functions, i.e., I, : U — R where F,(£) := f(x,£) contains
the objective value of x in scenario &.

To compare two points z and y: Order relations in the real linear
functional space RY of all mappings F : U — R.



Let Y = RY be the space of all functions F : U — R.
For some fixed xz € R":

FreY: Fp(§):= f(z,8).

To compare elements of Y: Consider different orderings on the
space Y denoted by «a. Let C' be a proper pointed closed convex
cone. Such a cone C induces partial ordering a :=< by

y1 € yo — C <= y1 <¢ yo.

Example 2: The natural order relation on Y is induced by

Cy ={FeY |V¢EeU: F()>0}:

VEGeY : FaG <— GeF4+Cy < F(&) <G((&) for all £ e U.



Definition 1 Let F be a nonempty subset of Y. An element F € F
is a minimal element of Fin Y w.r.t. « if

forGeF: GaF = F ad.

If « is induced by a proper cone C in Y with intC # 0, an
element F' € F is a weakly minimal element of FinY w.r.t. o if

(F—intC)nF = 0.

If o is induced by a cone, then an element F € F is a minimal
element of F in Y w.rt. aifandonly if (FF—C)NF CF+C.

Remark: Rockafellar, Royset (2013, 2015): Unifying framework
for handling uncertainty in a decision making process. f(x,:-) is
considered as random variable and by means of risk measures,
different models would be possible that address the issue how
to treat that random variable. Since random variables are also
functions, the connection to the vector approach is evident.



3.2 Set-based optimization as unifying concept

We are interested in all possible objective values which can ap-
pear if solution z is chosen. These are given by

By = f(z,U) :=A{f(z,§) [ £ € U}.

To compare two solutions z and y in this setting, define order
relations between their corresponding sets By and By.

Power set of R without the empty set: Z .= {A CR | A is nonempty }.
For a given x € R"™, we have

(the image of the mapping F, under U4). By C R is an interval
in case that f(z,-) is a continuous function.



In order to compare elements of Z, we consider certain set less
relations denoted by £.

Example 3: (Upper-type set-relation (Kuroiwa 1999, 1998)) Let
A, B € Z be arbitrarily chosen nonempty closed sets. Then the
u-type set-relation g :==<" is defined by

ABB <~ ACB-Ry<=VacAdbeB:a<b

which is equivalent to sup A < sup B. Note that 3 is induced by
the cone R in Z.

sup A sup B
. |

o }—R
A B

Visualization of A B B with g =<,



Example 4:(Lower-type set-relation (Kuroiwa 1999, 1998)) Let
A, B € Z be arbitrarily chosen nonempty closed sets. Then the
I-type set-relation 3 :==<! is defined by

ABB < BCA+Ry<=VbeBdacA:a<b
which is equivalent to inf A < inf B.

inf A inf B
r

..J;—]B

(SIS
\ 4
=

Visualization of A 8 B with 8 ==!.
Let B be a nonempty subset of ~Z.

Definition 2: A € B is a minimal element in B w.r.t. g if

forBeB.: BPA — ApBB.



3.3 A nonlinear scalarizing functional as unifying concept

Let Y be a linear topological space, £ € Y \ {0} and let F,B be
proper subsets of Y, B closed. We assume that

We consider the functional zB%: Y - RU {4+oo} U{—oc} =:R
2B (y) = inf{t e Rly € tk — B}. (3)

This functional was used as separating functional by Gerste-
witz (1983,1984), Pascoletti, Serafini (1984), Gopfert, Riahi,
Tammer, Zalinescu (2003), Penot, Sterna-Karwat (1986, 1989),
Sterna-Karwat (1987), Krasnosel'ski (1964), Rubinov (1977).

Definition 3: An element F € F is a minimal element of ¥ in Y
w.r.t. (3) if F solves the problem

B.k :
z — inf . P
(y) Inf (Pk,B,F)
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Operator Theory: Krasnosel'ski (1964), Rubinov (1977).
Separation theorems, vector optimization: Gerstewitz (1983, 1984),
Pascoletti, Serafini (1984), Gerstewitz / Iwanow (1985), Gopfert,
Ta., Zalinescu (1999).

In Economics: Luenberger (1992): Shortage function associated
to the production possibility set Y C R™ and g € R \ {0}

o(g,y) :=inf{{ eR [y — &g €V},

Luenberger (1992): Benefit function.

Mathematical Finance: Coherent risk measures associated to the
set of random variables corresponding to acceptable investments.
Artzner et. al. (1999), Marohn (2022).

Functional Analysis: Rubinov, Singer (2001) topical functionals.



3.4 Unifying concepts for strict robustness

Strict robustness: Soyster (1973), Ben-Tal, Nemirovski (1998),
El Ghaoui (1997).

Idea: The worst possible objective function value is minimized
in order to get a solution that is "good enough” even in the
worst-case scenario. Strictly robust counterpart of (Q(&),£ € U):

pro(x) =sup f(z,&) — inf
=7
stvéelU: Fyz,6)<0,i=1,...,m, (RC)
x € R™,

We call a feasible solution of (RC) strictly robust. Set of strictly
robust solutions:

A, ={xeR" | VEeU: Fi(x,6) <0, i=1,...,m}. (4)



Vector optimization as unifying concept

The strictly robust counterpart problem (RC) can be formulated
as a vector optimization problem in the infinite dimensional space
Y = RY as follows:

For Fp, : U — R, Fr (&) = f(x,£), consider the set of strictly robust
outcome functions in Y: Fy :={F, €Y |z €2y}, Fz, Fy €Y and
the sup-order relation aj :=<gyp on Y

Fr a1 Fy <= sup Fz(&) < sup Fy(&).
ceu ceuU

Minimal elements of F1 w.r.t. <sup (see Definition 1).

Compute minimal elements of F; w.r.t. <sup. (Zsup-VOP)



Lemma 1 Assume that every F, € Fq attains its supremum. If
Fy € 71 is a minimal element of 71 in' Y w.r.t. a1, then Fy Is a
weakly minimal element of F1 in'Y w.r.t. the natural ordering «
of Y induced by the ordering cone Cy .

Theorem 2 A strictly robust solution x € 21 is an optimal so-
lution of (RC) if and only if the corresponding strictly robust
outcome function F, € F1 is a minimal element of F1 w.r.t. the
sup-order relation a;.

Remark. In the light of Lemma 1, for each optimal solution =z
of the strictly robust counterpart problem (RC), F; is a weakly
minimal element of F; w.r.t. the natural ordering a in Y.



Set-valued optimization as unifying concept

Interpretation of strictly robust counterpart problem (RC) as a
set-valued optimization problem (see Definition 2).
For closed sets Bz, By € Z, the upper-type set-relation g; :==%

IS given by
Set of strictly robust outcome sets: By :={Bz € Z | x € A4 }.

Compute minimal elements of By w.r.t. <. (RU-SP)

Theorem 3 Suppose that the sets B, are closed for all x € 2.
A strictly robust solution x € 21 is an optimal solution of (RC) if
and only if the corresponding strictly robust outcome set B, € By
Is a minimal element of B1 with respect to the order relation 31.



Nonlinear scalarization as unifying concept

Interpretation of the strictly robust counterpart problem (RC)
using the nonlinear scalarizing functional (3)

BFy) :=inf{t eR |y € tk — B},
where kK € Y\ {0}, B C Y proper and closed, B+ [0,4+c) -k C B.
Employing the scalarizing functional (3), we consider the follo-
wing scalar minimization problem (see Definition 3)

B.k :
NMOE) — inf . P
2" (F) Anf (Pk.B,F;)

Let Fr iU — R, Fr (&) = f(x,§).



Theorem 4 Let B :=Cy, k1 ;=1 and F1 .={F, €Y| x €2y}.
Then x is an optimal solution of the strictly robust counterpart
problem (RC) if and only if Fy solves problem (P, p, 7,)-

Proof: B;+[0,4c0)-k1 C By holds, thus inclusion (2) is satisfied.

Furthermore, we have

BLRL(E) =

inf{t ¢ R
inf{t € R
inf{t € R
inf{t ¢ R
inf{t ¢ R

Fp € tk1 — B1}

Fp €tk — Cy}

Fr —tk1 € —Cy}
VEeU :: Fr(§) <t}
vEeU: f(z,§) <t}

= sup f(z,§&).
=)

Thus, Fy is minimal for (P, g, 7,) if and only if x € 2(; minimizes
supeey f(z,€), i.e., x is an optimal solution to (RC).



e-constraint robustness based on the nonlinear scalarization

Let Y be the space of all functions F: U — R, Cy = {F €
YIVEeU : F(£) >0}. Fix £ eU. Consider e : U — R, let Fp =
{Fr € Y|z e}, with 21 CR"?, Fx(&) = f(z,£). Furthermore,
let B ={yeY|yeCy —€c} and ky: U — R,

k2:{1 for £ =&, (5)

O otherwise.

Theorem 5 Lete: U — R. Then for k = k>, B = B>, (2) holds
and with F = F5, problem (P p r) Is equivalent to
inf f(z,8) —e(§)
st.Véeld: Fy(x,6) <0, 1=1,...,m, z € R", (eRC)
VEeUN{E}: [z, €) <e(6).



4. Optimality conditions for solutions of robust counterpart
problems

Generic approach to subdifferentials (see e.g. Dolecki, Malivert
(1993), Durea, Tammer (2009)):

Let X be a class of Banach spaces which contains the class of
finite dimensional normed vector spaces.

Abstract subdifferential 0: A map which associates to every lower
semicontinuous (Isc) function h: X € X — RU{+4o0} and to every
x € X a (possible empty) subset 0h(z) C X*. We use the notation
Domh := {x € X | h(x) # +o0}. Let X, Y € X and denote by
F(X,Y) a class of functions acting between X and Y having the
property that by composition at left with a Isc function from Y
to R the resulting function is still Isc.



(H1) If h is convex, then Oh(x) coincides with the Fenchel sub-

differential.
(H2) If =z is a local minimum point for h, then 0 € Oh(x);

Oh(u) = 0 if u ¢ Dom h.
(H3) If o : Y - RU {+} is convex and f € F(X,Y), then
Vo1 0(po f)(@) CUypcan(f)0W o f(z).
(H4) If o : Y - RU {400} is convex, f € F(X,Y), and Q C X is
a closed set containing z, then
O(po f+In)(xz) CIpo f)(z)+ dlq(x).

(H5) If A is lower semicontinuous and g : X — RU{+4o0} is locally
Lipschitz, then for every x € Domh N Domg,

O(h + g)(z) C Oh(x) 4+ 9g(x).



For a closed set 2 C X, the set 0lq(x) is denoted by Ny(x; 2)
and is called the set of normal directions to €2 at x € €2 with
respect to 0.

The properties (H3), (H4) and (H5) are called "exact calculus
rules’” for sums and for composition. Jean-Paul Penot: Subdif-
ferential calculus without qualification assumptions. Journal of
Convex Analysis Volume 3 (1996), No. 2, 207-2109.

e the limiting subdifferential (Kruger, Mordukhovich) when X
is the class of Asplund spaces, Y is finite dimensional and
F(X,Y) is the class of Lipschitz functions from X into Y;

e the approximate subdifferential (Ioffe) when X is the class of
Banach spaces and F(X,Y) is the class of strongly compactly
Lipschitz functions from X into Y.



Theorem 6 Let B CY be a closed convex proper set and k &

Y\ {0} s.t. (2) holds. Consider the functional zB-* in (3) and let
7y € Dom zB*. Then

925 F () = {y* € Y* | y*(k) = 1,Yb € B : y*(b)+y* (7)) > 0}.

Corollary 7 Let C CY be a closed convex cone with nonempty
interior. Then, for every k € intC the functional z¢F (see (3)
with B := C) is continuous, sublinear, strictly-int C-monotone
and for every g € Y, 829%(g) is nonempty and

8:0Fm) = {y* e CT | y* (k) = 1,4 (@) = 29F @)}
In particular, 9z¢°F(0) = {y* € CT | y*(k) = 1}.



Necessary conditions for solutions of the strictly robust counter-
part problem based on nonlinear scalarization functionals:

Theorem 8 Let Y be the space of all functions F : U — R,
By :=Cy, k1 :=1 and F1, ;= {F;y € Y| x € 21}. Consider an
optimal solution x to the strictly robust counterpart problem
(RC) and the abstract subdifferential © such that (H1), (H2),
(H3), (H4) and (H5) are fulfilled.

Then, there exists an element y* € (Cy)T with y*(k1) = 1 and
y*(Fy) = 2BUF1(Fy) such that

_y* S N(Fx; ]:1)-

Remark In the case of a finite number of scenarios (L scenarios),

we have y* € RY in the conditions of Theorem 8.



Theorem 9 Let Y be the space of all functions F : U — R,
e: U—-R, Fo:={{F:eY|xeAi}, withdy CR"?, Fr(§) := f(x,§).
Furthermore, let k> : U — R,

1 for & =&,
ko 1= { 0 othgrwige, (6)
and Cy ;= {F € Y|V¢ e U : F(£) > 0}. Moreover, we define
By ={yeY|yeCy —¢€}.
Consider an optimal solution x to the e-constraint robust coun-
terpart problem (eRC) and the abstract subdifferential 0 such
that (H1), (H2), (H3), (H4) and (H5) are fulfilled. Then, there
exists an element y* € Y* with y*(ko) = 1 and y*(F;) + y*(b) >
B2k2(F) for every b € B> such that

_y* € N(Fg; Fo).



5. Conclusions, further research

Unifying approaches for regret robustness, reliability, adjustable robustness,
minimizing the expectation, stochastic dominance.

Using the approach based on vector optimization, a necessary condition for
optimal solutions x € 2; of (RC) can be formulated by a vector variational
inequality with a mapping W : X — L(X,Y):

Find z € 23 such that (W (z))(u — ) ¢ intCy for every u € ;.
Algorithms (projection methods), see Hebestreit (2020).

To study dependence of solutions to the vector problem on parameters (con-
tinuity properties) employing results by Penot, Sterna-Karwat (1986, 1989)
to robust counterpart problems based on nonlinear scalarization.

Necessary conditions for solutions of the robust counterpart problems (RC)

based on the upper set relation using Bao, Tammer (2019), Theorem 4.1.
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Happy birthday, dear Jean-Paull



