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A quotation from 1997

With the discovery of the convex subdifferential and the subdifferential of a max-type
function it was generally understood that in the nonsmooth case it is not sufficient to employ
a singleton - the gradient - to study properties of a function.

The introduction of the Clarke sub-differential was a great breakthrough, and a safari
season started in the Wilderness of Endolandia.

Many different generalizations of the concept of gradient have been proposed.

The most productive hunter is Jean-Paul Penot.
He discovered and studied many convex objects, one of the most
promising and popular being that of “small subdifferential” (nurtured
jointly with P. Michel)
today we join the expedition, now hunting for ε-subdifferentials
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Why bother about ε-subgradients?
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Two prolific hunters in the convex case

JBHU (calculus!) and CLL (algorithms)

Chapter 5, Dec 4th, 1980:
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Why bother about ε-subgradients?

The inclusion 0 ∈ ∂ f (x̄) can fail as optimality certificate

▶ As a set-valued mapping ∂εk f (x) is osc:(
εk ,xk ,g(xk) ∈ ∂ε f (xk)

)
:


εk → 0
xk → x̄

g(xk)→ ḡ .
=⇒ ḡ ∈ ∂ f (x̄)

▶ As a set-valued mapping, ∂εk f (x) is not isc: Given ḡ ∈ ∂ f (x̄)

∃
(

xk ,g(xk) ∈ ∂εk f (xk)
)
:


εk → 0
xk → x̄

g(xk)→ ḡ .
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The transportation formula for convex f : from ∂ f (x0) to ∂ε f (u0)
Or how to express subgradients at one point
as approximate-subgradients at another point

f (x)≥ f (x0)+ ⟨x∗
0 ,x − x0⟩= f (u0)+ ⟨x∗

0 ,x −u0⟩− ε ε = f (u0)− f (x0)−⟨x∗
0 ,u0 − x0⟩

Algorithmic optimality certificate
▶ checks if, for x∗

ε ∈ ∂ε f (xε), ∥x∗
ε ∥ and ε are small

▶ for some stepsize t , these objects are driven to 0 by a descent mechanism ensuring

0 ≤ t∥x∗
ε ∥2 + ε ≤ fraction of

(
f (xk)− f (xk+1)

)
→ 0

▶ EUREKA

Transportation in the inverse direction, from ∂ε f (u0) to ∂ f (x0)?

⇐ Bröndsted-Rockafellar theorem
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Bröndsted-Rockafellar’s-like results

(I) For a closed proper convex function f
▶ given u⋆

0 ∈ ∂ε f (u0)
▶ there exist xε ∈ Rn, x⋆ε ∈ ∂ f (xε) such that

∥xε −u0∥ ≤
√

ε

∥x⋆ε −u⋆
0∥ ≤

√
ε

(II) There is a unique perturbation p such that

u∗
0 −p ∈ ∂ f (u0 +p) , ∥p∥ ≤

√
ε .

(useful for showing linear convergence rate)
(III) a more detailed result:

J.-P. Penot. “Subdifferential Calculus Without Qualification Assumption”

Journal of Convex Analysis 3 (1996), pp. 207-220
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Bröndsted-Rockafellar’s-like results

(I) For a closed proper convex function f
▶ given u⋆

0 ∈ ∂ε f (u0)
▶ there exist xε ∈ Rn, x⋆ε ∈ ∂ f (xε) such that

∥xε −u0∥ ≤
√

ε

∥x⋆ε −u⋆
0∥ ≤

√
ε

(II) There is a unique perturbation p such that

u∗
0 −p ∈ ∂ f (u0 +p) , ∥p∥ ≤

√
ε .

(useful for showing linear convergence rate)
(III) a more detailed result:

J.-P. Penot. “Subdifferential Calculus Without Qualification Assumption”

Journal of Convex Analysis 3 (1996), pp. 207-220
13 / 25



Bröndsted-Rockafellar’s-like results
JPP’s Variational principle (Prop.1.1)

(III) For a closed proper convex function f ,
▶ given u⋆

0 ∈ ∂ε f (u0)
▶ there exist xε ∈ Rn, x⋆ε ∈ ∂ f (xε) and γ ∈ [−1,1], such that

∥xε −u0∥+ 1√
ε
|⟨u⋆

0,xε −u0⟩| ≤
√

ε

∥x⋆ε − (1+ γ)u⋆
0∥ ≤

√
ε

|⟨x⋆ε −u⋆
0,xε −u0⟩| ≤ ε

|⟨x⋆ε ,xε −u0⟩| ≤ 2ε

|f (xε)− f (u0)| ≤ 2ε

What if f is not convex?
is there some form of benign nonconvexity
that preserves BR’s-like results?
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YES! Weakly convex functions

∃ρ > 0 : ∀y ,x the functions F y(x) := f (x)+ ρ

2∥x − y∥2 are convex
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YES! Weakly convex functions

∃ρ > 0 : ∀x̂ ,x the functions F x̂(x) := f (x)+ ρ

2∥x − x̂∥2 are convex

A w.c. f is a benign DC function:
▶ f is para-convex or prox-bounded globally
▶ f proximal subdifferential coincides with Clarke’s
▶ ∂ f (·)+ρ(·− x̂) is the subdifferential of the convex function F x̂(·)

=⇒ ∂F x̂(x̂) = ∂ f (x̂)
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There are many weakly convex functions

▶ Composite functions f = h ◦ c
▶ h is a convex function with Lipschitz constant Lh
▶ c is a C1 mapping, gradient has Lipschitz constant Lc

ρ = LhLc

▶ Phase retrieval

f (x) =
1
m

m

∑
i=1

| ⟨ai ,x⟩2 −bi |

▶ Covariance matrix estimation similar, but bi ≈ a⊤
i XX⊤ai

In both cases ρ is independent of dimension and m
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Approximate subgradients for w.c. functions

Exploit subdifferential structure of F x̂(·) = f (·)+ ρ

2∥ ·−x̂∥2

▶ ∂ f (·)+ρ(·− x̂) is the subdifferential of the convex function F x̂(·)
▶ =⇒ substract ρ(·− x̂) from ∂εF x̂(·)

we define
∂

x̂
ε f (·) := ∂εF x̂(·)−ρ(·− x̂)
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Analysis calculus for ε-subdifferentials! for instance,. . .
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Bröndsted-Rockafellar’s-like results
Extension of JPP’s Variational principle (Prop.1.1)

(III) For a closed proper ρ-weakly convex function f ,

▶ given u⋆
0 ∈ ∂

u1
ε f (u0)

▶ there exist xε ∈ Rn, x⋆ε ∈ ∂ f (xε) and γ ∈ [−1,1], such that

∥xε −u0∥+ 1√
ε
|⟨u⋆

0,xε −u0⟩| ≤
√

ε

∥x⋆ε − (1+ γ)u⋆
0∥ ≤

√
ε

|⟨x⋆ε −u⋆
0,xε −u0⟩| ≤ ε

|⟨x⋆ε ,xε −u0⟩| ≤ 2ε

|f (xε)− f (u0)| ≤ (2 +ρ )ε + 3ρ

2
∥u0 −u1∥2
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More results

- Extension of JPP’s Corollary 1.2 For a closed proper ρ-weakly convex function f ,
▶ given u0 ∈ dom f
▶ there exists a sequence

(
xk ,x∗

k ∈ ∂ f (xk)
)

k
such that

xk → u0
f (xk) → f (u0)

⟨x⋆
k ,xk −u0⟩ → 0.

Any cluster point of {x⋆
k } satisfying these properties, whenever it exists, belongs to ∂ f (u0).

- Algorithmic optimality certificate checks if for x∗
ε ∈ ∂

xε

ε f (xε), ∥x∗
ε ∥ and ε are small

▶ since ∂
xε

ε f (xε) = ∂εF xε (xε)

f (y)+
ρ

2
∥y − xε∥2 ≥ f (xε)+ ⟨x∗

ε ,y − xε⟩− ε
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(on going work)

ε-subgradient descent schemes for w.c. optimization à la S. M. Robinson.

“Linear convergence of epsilon-subgradient descent methods for a class of convex functions”

Mathematical Programming 86.1 (1999)

Sequences

xk+1 = xk − tkdk for dk ∈ ∂
xk
εk

f (xk) and tk ∈ [tmin, tmax]

satisfying a descent condition

f (xk+1)≤ f (xk)−m
(

εk + tk∥dk∥2
)

m ∈ (0,1)

are shown to be
globally convergent
with linear speed, if KL condition and proper separation of isocost

⊂ nonconvex prox and redistributed bundle serious steps
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What next?

▶ faster algorithms for w.c. optimization
▶ stable VU-decompositions exploiting ε-subdifferential structure

▶ For composite functions f = h ◦ c,

∂ f (x) = c′(x)⊤∂h(C) for C = c(x)

▶ compare ∂ x
ε f (x) with the (global) approximate subdifferential

∂ε f (x) := c′(x)⊤∂εh(C)

▶ theory
▶ continuous time proximal methods, ODE’s
▶ results from Convex Analysis ε−subdifferential

The end: merci et joyeux anniversaire
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