Weak convexity and approximate subdifferentials

Claudia Sagastizabal ´

(co-author F. Atenas) IMECC-UNICAMP Brazil

JPP-Fest *Challenges and advances in modern variational analysis* March 15th, 2023

Journal of Global Optimization 10, 305-326 (1997)

With the discovery of the convex subdifferential and the subdifferential of a max-type function it was generally understood that in the nonsmooth case it is not sufficient to employ a singleton - the gradient - to study properties of a function.

Journal of Global Optimization 10, 305-326 (1997)

With the discovery of the convex subdifferential and the subdifferential of a max-type function it was generally understood that in the nonsmooth case it is not sufficient to employ a singleton - the gradient - to study properties of a function. The introduction of the Clarke sub-differential was a great breakthrough, and a safari season started in the Wilderness of Endolandia.

Journal of Global Optimization 10, 305-326 (1997)

With the discovery of the convex subdifferential and the subdifferential of a max-type function it was generally understood that in the nonsmooth case it is not sufficient to employ a singleton - the gradient - to study properties of a function. The introduction of the Clarke sub-differential was a great breakthrough, and a safari season started in the Wilderness of Endolandia.

Many different generalizations of the concept of gradient have been proposed.

Journal of Global Optimization 10, 305-326 (1997)

With the discovery of the convex subdifferential and the subdifferential of a max-type function it was generally understood that in the nonsmooth case it is not sufficient to employ a singleton - the gradient - to study properties of a function. The introduction of the Clarke sub-differential was a great breakthrough, and a safari

season started in the Wilderness of Endolandia.

Many different generalizations of the concept of gradient have been proposed.

The most productive hunter is Jean-Paul Penot.

He discovered and studied many convex objects, one of the most promising and popular being that of "small subdifferential" (nurtured jointly with P. Michel)

Journal of Global Optimization 10, 305-326 (1997)

With the discovery of the convex subdifferential and the subdifferential of a max-type function it was generally understood that in the nonsmooth case it is not sufficient to employ a singleton - the gradient - to study properties of a function. The introduction of the Clarke sub-differential was a great breakthrough, and a safari

season started in the Wilderness of Endolandia.

Many different generalizations of the concept of gradient have been proposed.

The most productive hunter is Jean-Paul Penot.

He discovered and studied many convex objects, one of the most promising and popular being that of "small subdifferential" (nurtured jointly with P. Michel)

today we join the expedition, now hunting for ε**-subdifferentials**

Two prolific hunters in the convex case

JBHU (calculus!) and CLL (algorithms)

Two prolific hunters in the convex case

1.2. Construction des ε -sous-différentiels.

Etant donnée une fonction convexe, on peut en général calculer en un point x : la valeur de la fonction, et un sous-gradient ; plus rarement. on peut calculer tout $\partial f(x)$. Il est exceptionnel de pouvoir calculer directement tout $\partial_{\varepsilon} f(x)$ pour un $\varepsilon > 0$ (cf. [11]). La question se pose donc de savoir comment calculer des éléments de $\partial_{\rho} f(x)$ qui ne soient pas dans $\delta f(x)$. Ce paragraphe montre qu'on peut le faire en calculant des éléments de $\partial f(y)$, pour des points y bien choisis.

Théorème $1.2.1$.

Soient x et y appartenant à dom f, $g \in \partial f(y)$. Une condition nécessaire et suffisante pour que g soit également dans $\partial_{\rho} f(x)$ est :

$$
(11) \quad f(y) \geq f(x) + (g_y - x) - \varepsilon
$$

Démonstration : La condition et évidemment nécessaire : la relation de définition (7) doit au moins être satisfaite pour z=y.

Remarque 1.2.2. : Ce théorème très simple est fondamental, et nous en ferons un usage constant. Nous l'appellerons théorème de transport des sous-gradients.

Un façon simple d'interpréter la relation (11) est de considérer le nombre

$$
\alpha(y, g, x) = f(x) - [f(y) + (g, x-y)]
$$

Ce nombre est positif. Il représente l'erreur faite en remplaçant f(x) par la valeur en x de la linéarisation de f en y. Le théorème 1.2.1. s'écrit : soit $g \in \partial f(y)$. Alors :

 $g \in \partial_{\alpha} f(x)$ si et seulement si $\alpha(y,g,x) \leq \epsilon$

ce qui peut s'énoncer : $g \in \partial_{\epsilon} f(x)$ si $f(x)$ est approché à ϵ près par la linéarisation de f en y. //

The inclusion $0 \in \partial f(\bar{x})$ can **fail** as optimality certificate

The inclusion $0 \in \partial f(\bar{x})$ can **fail** as optimality certificate ▶ As a set-valued mapping $\partial f(x)$ is osc:

$$
\begin{pmatrix} x^k, g(x^k) \in \partial f(x^k) \end{pmatrix} : \begin{cases} x^k \to \bar{x} & \implies \bar{g} \in \partial f(\bar{x}) \\ g(x^k) \to \bar{g} \end{cases}
$$

The inclusion $0 \in \partial f(\bar{x})$ can **fail** as optimality certificate ▶ As a set-valued mapping $\partial f(x)$ is osc:

$$
\begin{pmatrix} x^k, g(x^k) \in \partial f(x^k) \end{pmatrix} : \begin{cases} x^k \to \bar{x} & \implies \bar{g} \in \partial f(\bar{x}) \\ g(x^k) \to \bar{g} \end{cases}
$$

▶ As a set-valued mapping, $\partial f(x)$ is **not** isc: Given $\bar{g} \in \partial f(\bar{x})$

The inclusion $0 \in \partial f(\bar{x})$ can **fail** as optimality certificate ▶ As a set-valued mapping $\partial f(x)$ is osc:

$$
\begin{pmatrix} x^k, g(x^k) \in \partial f(x^k) \end{pmatrix} : \begin{cases} x^k \to \bar{x} & \implies \bar{g} \in \partial f(\bar{x}) \\ g(x^k) \to \bar{g} \end{cases}
$$

▶ As a set-valued mapping, $\partial f(x)$ is **not** isc: Given $\bar{g} \in \partial f(\bar{x})$

$$
\exists \Big(x^k, g(x^k) \in \partial \ f(x^k)\Big) : \left\{\begin{array}{c} x^k \to \bar{x} \\ g(x^k) \to \bar{g} \end{array} \right.
$$

The inclusion $0 \in \partial f(\bar{x})$ can fail as optimality certificate ▶ As a set-valued mapping $\partial f(x)$ is osc:

$$
\begin{pmatrix} x^k, g(x^k) \in \partial f(x^k) \end{pmatrix} : \begin{cases} x^k \to \bar{x} & \implies \bar{g} \in \partial f(\bar{x}) \\ g(x^k) \to \bar{g}. \end{cases}
$$

▶ As a set-valued mapping, $\partial f(x)$ is **not** isc: Given $\bar{g} \in \partial f(\bar{x})$

$$
\exists \Big(x^k, g(x^k) \in \partial \ f(x^k)\Big) : \left\{ \begin{array}{c} x^k \to \bar{x} \\ g(x^k) \to \bar{g} \end{array} \right.
$$

???

The inclusion $0 \in \partial f(\bar{x})$ can fail as optimality certificate ▶ As a set-valued mapping $\partial f(x)$ is osc:

$$
\begin{pmatrix} x^k, g(x^k) \in \partial f(x^k) \end{pmatrix} : \begin{cases} x^k \to \bar{x} & \implies \bar{g} \in \partial f(\bar{x}) \\ g(x^k) \to \bar{g}. \end{cases}
$$

▶ As a set-valued mapping, $\partial f(x)$ is **not** isc: Given $\bar{g} \in \partial f(\bar{x})$

$$
\exists \left(x^k, g(x^k) \in \partial \ f(x^k)\right) : \left\{\begin{array}{c} x^k \to \overline{x} \\ g(x^k) \to \overline{g} \end{array}\right.
$$

???

The inclusion $0 \in \partial f(\bar{x})$ can fail as optimality certificate ▶ As a set-valued mapping $\partial f(x)$ is osc:

$$
\begin{pmatrix} x^k, g(x^k) \in \partial f(x^k) \end{pmatrix} : \begin{cases} x^k \to \bar{x} & \implies \bar{g} \in \partial f(\bar{x}) \\ g(x^k) \to \bar{g}. \end{cases}
$$

▶ As a set-valued mapping, $\partial f(x)$ is **not** isc: Given $\bar{g} \in \partial f(\bar{x})$

$$
\exists \left(x^k, g(x^k) \in \partial \ f(x^k)\right) : \left\{\begin{array}{c} x^k \to \overline{x} \\ g(x^k) \to \overline{g} \end{array}\right.
$$

The inclusion $0 \in \partial f(\bar{x})$ can fail as optimality certificate: use instead $0 \in \partial_{\varepsilon} f(\bar{x})$

The inclusion $0 \in \partial f(\bar{x})$ can fail as optimality certificate: use instead $0 \in \partial_{\varepsilon} f(\bar{x})$ ▶ As a set-valued mapping $\partial_{\varepsilon_k} f(x)$ is osc:

$$
\left(\varepsilon_k,x^k,g(x^k)\in\partial_{\varepsilon}f(x^k)\right):\begin{cases} \varepsilon_k\to0\\ x^k\to\bar{x}\\ g(x^k)\to\bar{g}\end{cases}\Longrightarrow\bar{g}\in\partial f(\bar{x})
$$

The inclusion $0 \in \partial f(\bar{x})$ can fail as optimality certificate: use instead $0 \in \partial_{\varepsilon} f(\bar{x})$ ▶ As a set-valued mapping $\partial_{\varepsilon_k} f(x)$ is osc:

$$
\left(\varepsilon_k,x^k,g(x^k)\in\partial_{\varepsilon}f(x^k)\right):\begin{cases}\varepsilon_k\to0\\x^k\to\bar x\\\hskip.2in g(x^k)\to\bar g\,.\end{cases}\Longrightarrow\bar g\in\partial f(\bar x)
$$

▶ As a set-valued mapping, $\partial_{\varepsilon_k} f(x)$ is also isc: Given $\bar{g} \in \partial f(\bar{x})$

$$
\exists \left(x^k, g(x^k) \in \partial_{\boldsymbol{\varepsilon}_k} f(x^k)\right) : \left\{ \begin{array}{c} \boldsymbol{\varepsilon}_k \to \boldsymbol{0} \\ x^k \to \bar{x} \\ g(x^k) \to \bar{g} \end{array} \right.
$$

The inclusion $0 \in \partial f(\bar{x})$ can fail as optimality certificate: use instead $0 \in \partial_{\varepsilon} f(\bar{x})$ ▶ As a set-valued mapping $\partial_{\varepsilon_k} f(x)$ is osc:

$$
\left(\varepsilon_k,x^k,g(x^k)\in\partial_{\varepsilon}f(x^k)\right):\begin{cases}\varepsilon_k\to0\\x^k\to\bar x\\\hskip.2in g(x^k)\to\bar g\,.\end{cases}\Longrightarrow\bar g\in\partial f(\bar x)
$$

▶ As a set-valued mapping, $\partial_{\varepsilon_k} f(x)$ is also isc: Given $\bar{g} \in \partial f(\bar{x})$

$$
\exists \left(x^{k}, g(x^{k}) \in \partial_{\varepsilon_{k}}f(x^{k})\right) : \left\{\begin{array}{c} \varepsilon_{k} \to 0 \\ x^{k} \to \overline{x} \\ g(x^{k}) \to \overline{g} \end{array}\right.
$$

The inclusion $0 \in \partial f(\bar{x})$ can fail as optimality certificate: use instead $0 \in \partial_{\varepsilon} f(\bar{x})$ ▶ As a set-valued mapping $\partial_{\varepsilon_k} f(x)$ is osc:

$$
\left(\varepsilon_k,x^k,g(x^k)\in\partial_{\varepsilon}f(x^k)\right):\begin{cases}\varepsilon_k\to0\\x^k\to\bar x\\\hskip.2in g(x^k)\to\bar g\,.\end{cases}\Longrightarrow\bar g\in\partial f(\bar x)
$$

▶ As a set-valued mapping, $\partial_{\varepsilon_k} f(x)$ is also isc: Given $\bar{g} \in \partial f(\bar{x})$

In an algorithmic scheme, ε**-subgradients are built using subgradient information**

The transportation formula for convex *f***: from** $\overline{\partial} f(x_0)$ to $\overline{\partial_{\varepsilon} f(u_0)}$

Or how to express subgradients at one point as approximate-subgradients at another point

The transportation formula for convex *f***: from** $\overline{\partial} f(x_0)$ to $\overline{\partial_{\varepsilon} f(u_0)}$

Or how to express subgradients at one point as approximate-subgradients at another point

$$
f(x) \geq f(x_0) + \langle x_0^*, x - x_0 \rangle = f(u_0) + \langle x_0^*, x - u_0 \rangle - \varepsilon \quad \varepsilon = f(u_0) - f(x_0) - \langle x_0^*, u_0 - x_0 \rangle
$$

Or how to express subgradients at one point

as approximate-subgradients at another point

$$
f(x) \ge f(x_0) + \langle x_0^*, x - x_0 \rangle = f(u_0) + \langle x_0^*, x - u_0 \rangle - \varepsilon \quad \varepsilon = f(u_0) - f(x_0) - \langle x_0^*, u_0 - x_0 \rangle
$$

Algorithmic optimality certificate

- ▶ checks if, for $x_{\varepsilon}^* \in \partial_{\varepsilon} f(x_{\varepsilon}), \|x_{\varepsilon}^*\|$ and ε are small
- for some stepsize *t*, these objects are driven to 0 by a descent mechanism ensuring

$$
0 \leq t \|x_{\varepsilon}^*\|^2 + \varepsilon \leq \text{fraction of } \left(f(x^k) - f(x^{k+1})\right)
$$

Or how to express subgradients at one point

as approximate-subgradients at another point

$$
f(x) \ge f(x_0) + \langle x_0^*, x - x_0 \rangle = f(u_0) + \langle x_0^*, x - u_0 \rangle - \varepsilon \quad \varepsilon = f(u_0) - f(x_0) - \langle x_0^*, u_0 - x_0 \rangle
$$

Algorithmic optimality certificate

- ▶ checks if, for $x_{\varepsilon}^* \in \partial_{\varepsilon} f(x_{\varepsilon}), \|x_{\varepsilon}^*\|$ and ε are small
- for some stepsize *t*, these objects are driven to 0 by a descent mechanism ensuring

$$
0 \le t \|x_{\varepsilon}^*\|^2 + \varepsilon \le \text{fraction of } \left(f(x^k) - f(x^{k+1})\right) \to 0
$$

Or how to express subgradients at one point

as approximate-subgradients at another point

$$
f(x) \geq f(x_0) + \langle x_0^*, x - x_0 \rangle = f(u_0) + \langle x_0^*, x - u_0 \rangle - \varepsilon \quad \varepsilon = f(u_0) - f(x_0) - \langle x_0^*, u_0 - x_0 \rangle
$$

Algorithmic optimality certificate

- ▶ checks if, for $x_{\varepsilon}^* \in \partial_{\varepsilon} f(x_{\varepsilon}), \|x_{\varepsilon}^*\|$ and ε are small
- for some stepsize *t*, these objects are driven to 0 by a descent mechanism ensuring

$$
0 \le t \|x_{\varepsilon}^*\|^2 + \varepsilon \le \text{fraction of } \left(f(x^k) - f(x^{k+1})\right) \to 0
$$

Or how to express subgradients at one point

as approximate-subgradients at another point

$$
f(x) \ge f(x_0) + \langle x_0^*, x - x_0 \rangle = f(u_0) + \langle x_0^*, x - u_0 \rangle - \varepsilon \quad \varepsilon = f(u_0) - f(x_0) - \langle x_0^*, u_0 - x_0 \rangle
$$

Algorithmic optimality certificate

▶ **EUREKA**

- ▶ checks if, for $x_{\varepsilon}^* \in \partial_{\varepsilon} f(x_{\varepsilon}), \|x_{\varepsilon}^*\|$ and ε are small
- for some stepsize *t*, these objects are driven to 0 by a descent mechanism ensuring

$$
0 \le t \|x_{\varepsilon}^*\|^2 + \varepsilon \le \text{fraction of } \left(f(x^k) - f(x^{k+1})\right) \to 0
$$

Transportation in the inverse direction, from $\partial_{\varepsilon} f(u_0)$ **to** $\partial f(x_0)$ **?**

Or how to express subgradients at one point

as approximate-subgradients at another point

$$
f(x) \ge f(x_0) + \langle x_0^*, x - x_0 \rangle = f(u_0) + \langle x_0^*, x - u_0 \rangle - \varepsilon \quad \varepsilon = f(u_0) - f(x_0) - \langle x_0^*, u_0 - x_0 \rangle
$$

Algorithmic optimality certificate

- ▶ checks if, for $x_{\varepsilon}^* \in \partial_{\varepsilon} f(x_{\varepsilon}), \|x_{\varepsilon}^*\|$ and ε are small
- for some stepsize *t*, these objects are driven to 0 by a descent mechanism ensuring

$$
0 \le t \|x_{\varepsilon}^*\|^2 + \varepsilon \le \text{fraction of } \left(f(x^k) - f(x^{k+1})\right) \to 0
$$

Transportation in the inverse direction, from $\partial_{\varepsilon} f(u_0)$ **to** $\partial f(x_0)$ **?**

▶ **EUREKA**

 \Leftarrow Bröndsted-Rockafellar theorem

(I) For a closed proper convex function *f*

▶ given u_0^* \in $\partial_{\varepsilon} f(u_0)$

▶ there exist x_{ε} \in \mathbb{R}^n , x_{ε} \in ∂ *f*(x_{ε}) such that

$$
\|x_{\varepsilon} - u_0\| \leq \sqrt{\varepsilon}
$$

$$
\|x_{\varepsilon}^* - u_0^*\| \leq \sqrt{\varepsilon}
$$

(I) For a closed proper convex function *f*

▶ given u_0^* \in $\partial_{\varepsilon} f(u_0)$

▶ there exist x_{ε} \in \mathbb{R}^n , x_{ε} \in ∂ *f*(x_{ε}) such that

$$
\|x_{\varepsilon} - u_0\| \leq \sqrt{\varepsilon}
$$

$$
\|x_{\varepsilon}^* - u_0^*\| \leq \sqrt{\varepsilon}
$$

(II) There is a unique perturbation *p* such that *u* ∗ $\frac{1}{0}$ + *p* = *p* = *i* + *i* + *p*), $||p|| \leq \sqrt{\varepsilon}$. (useful for showing linear convergence rate)

(I) For a closed proper convex function *f*

▶ given u_0^* \in $\partial_{\varepsilon} f(u_0)$

▶ there exist x_{ε} \in \mathbb{R}^n , x_{ε} \in ∂ *f*(x_{ε}) such that

$$
\|x_{\varepsilon} - u_0\| \leq \sqrt{\varepsilon}
$$

$$
\|x_{\varepsilon}^* - u_0^*\| \leq \sqrt{\varepsilon}
$$

(II) There is a unique perturbation *p* such that

$$
u_0^* - p \in \partial f(u_0 + p), \quad ||p|| \leq \sqrt{\varepsilon}.
$$

(useful for showing linear convergence rate)

(III) a more detailed result:

J.-P. Penot. "Subdifferential Calculus Without Qualification Assumption"

Journal of Convex Analysis 3 (1996), pp. 207-220

JPP's Variational principle (Prop.1.1)

(III) For a closed proper convex function *f*, ▶ given u_0^* \in $\partial_{\varepsilon} f(u_0)$ ▶ there exist x_{ε} \in \mathbb{R}^n , x_{ε}^* \in $\partial f(x_{\varepsilon})$ and γ \in $[-1,1]$, such that $||x_{\varepsilon}-u_0||+\frac{1}{\sqrt{2}}$ $\frac{1}{\varepsilon}$ $\langle u_0^*$ $\vert \vec{a}, x_{\varepsilon} - u_0 \rangle \vert \leq \sqrt{\varepsilon}$ $\|\mathbf{x}_{\varepsilon}^{\star}-(1+\gamma)\mathbf{u}_{0}^{\star}$ $\|\vec{\zeta}\| \leq \sqrt{\varepsilon}$ $\vert \langle x_{\varepsilon}^* - u_0^* \rangle$ $\vert \zeta_0^{\star}, x_{\varepsilon} - u_0 \rangle \vert \leq \varepsilon$ $|\langle x_{\mathcal{E}}^{\star}$ $\left|\frac{\partial}{\partial \epsilon}, x_{\varepsilon} - u_0\right| \leq 2\varepsilon$ $|f(x_{\varepsilon})-f(u_{0})| < 2\varepsilon$

JPP's Variational principle (Prop.1.1)

(III) For a closed proper convex function *f*, ▶ given u_0^* \in $\partial_{\varepsilon} f(u_0)$ ▶ there exist x_{ε} \in \mathbb{R}^n , x_{ε}^* \in $\partial f(x_{\varepsilon})$ and γ \in $[-1,1]$, such that $||x_{\varepsilon}-u_0||+\frac{1}{\sqrt{2}}$ $\frac{1}{\varepsilon}$ $\langle u_0^*$ $\vert \vec{a}, x_{\varepsilon} - u_0 \rangle \vert \leq \sqrt{\varepsilon}$ $\|\mathbf{x}_{\varepsilon}^{\star}-(1+\gamma)\mathbf{u}_{0}^{\star}$ $\|\vec{\zeta}\| \leq \sqrt{\varepsilon}$ $\vert \langle x_{\varepsilon}^* - u_0^* \rangle$ $\vert \zeta_0^{\star}, x_{\varepsilon} - u_0 \rangle \vert \leq \varepsilon$ $|\langle x_{\mathcal{E}}^{\star}$ $\left|\frac{\partial}{\partial \epsilon}, x_{\varepsilon} - u_0\right| \leq 2\varepsilon$ $|f(x_{s})-f(y_{0})| < 2\varepsilon$ **What if** *f* **is not convex?**

JPP's Variational principle (Prop.1.1)

(III) For a closed proper convex function *f*, ▶ given u_0^* \in $\partial_{\varepsilon} f(u_0)$ ▶ there exist x_{ε} \in \mathbb{R}^n , x_{ε}^* \in $\partial f(x_{\varepsilon})$ and γ \in $[-1,1]$, such that $||x_{\varepsilon}-u_0||+\frac{1}{\sqrt{2}}$ $\frac{1}{\varepsilon}$ $\langle u_0^*$ $\vert \vec{a}, x_{\varepsilon} - u_0 \rangle \vert \leq \sqrt{\varepsilon}$ $\|\mathbf{x}_{\varepsilon}^{\star}-(1+\gamma)\mathbf{u}_{0}^{\star}$ $\|\vec{\zeta}\| \leq \sqrt{\varepsilon}$ $\vert \langle x_{\varepsilon}^* - u_0^* \rangle$ $\vert \zeta_0^{\star}, x_{\varepsilon} - u_0 \rangle \vert \leq \varepsilon$ $|\langle x_{\mathcal{E}}^{\star}$ $\left|\frac{\partial}{\partial \epsilon}, x_{\varepsilon} - u_0\right| \leq 2\varepsilon$ $|f(x_{\varepsilon})-f(u_{0})| < 2\varepsilon$ **What if** *f* **is not convex?**

is there some form of benign nonconvexity that preserves BR's-like results?

$\exists \rho > 0 : \forall y, x$ the functions $F^y(x) := f(x) + \frac{\rho}{2} ||x - y||^2$ are convex

 $\exists \rho > 0 : \forall y, x$ the functions $F^y(x) := f(x) + \frac{\rho}{2} ||x - y||^2$ are convex

 $\exists \rho > 0 : \forall \hat{x}, x$ the functions $F^{\hat{x}}(x) := f(x) + \frac{\rho}{2} ||x - \hat{x}||^2$ are convex

 $\exists \rho > 0 : \forall \hat{x}, x$ the functions $F^{\hat{x}}(x) := f(x) + \frac{\rho}{2} ||x - \hat{x}||^2$ are convex

 $\exists \rho > 0 : \forall \hat{x}, x$ the functions $F^{\hat{x}}(x) := f(x) + \frac{\rho}{2} ||x - \hat{x}||^2$ are convex

A w.c. *f* is a *benign* DC function:

 $\exists \rho > 0 : \forall \hat{x}, x$ the functions $F^{\hat{x}}(x) := f(x) + \frac{\rho}{2} ||x - \hat{x}||^2$ are convex

A w.c. *f* is a *benign* DC function:

▶ *^f* is para-convex or prox-bounded *globally*

 $\exists \rho > 0 : \forall \hat{x}, x$ the functions $F^{\hat{x}}(x) := f(x) + \frac{\rho}{2} ||x - \hat{x}||^2$ are convex

A w.c. *f* is a *benign* DC function:

- ▶ *^f* is para-convex or prox-bounded *globally*
- ▶ *f* proximal subdifferential coincides with Clarke's

 $\exists \rho > 0 : \forall \hat{x}, x$ the functions $F^{\hat{x}}(x) := f(x) + \frac{\rho}{2} ||x - \hat{x}||^2$ are convex

A w.c. *f* is a *benign* DC function:

- ▶ *^f* is para-convex or prox-bounded *globally*
- ▶ *f* proximal subdifferential coincides with Clarke's
- $\blacktriangleright \partial f(\cdot) + \rho(\cdot \hat{x})$ is the subdifferential of the convex function $F^{\hat{x}}(\cdot)$

 $\exists \rho > 0 : \forall \hat{x}, x$ the functions $F^{\hat{x}}(x) := f(x) + \frac{\rho}{2} ||x - \hat{x}||^2$ are convex

A w.c. *f* is a *benign* DC function:

- ▶ *^f* is para-convex or prox-bounded *globally*
- ▶ *f* proximal subdifferential coincides with Clarke's

 $\blacktriangleright \partial f(\cdot) + \rho(\cdot - \hat{x})$ is the subdifferential of the convex function $F^{\hat{x}}(\cdot)$ $\Longrightarrow \partial F^{\hat{x}}(\hat{x}) = \partial f(\hat{x})$

- ▶ Composite functions $f = h \circ c$
	- ▶ *h* is a convex function with Lipschitz constant L_h
	- ▶ *^c* is a *^C* ¹ mapping, gradient has Lipschitz constant *L^c*

 $\rho = L_h L_c$

- ▶ Composite functions $f = h \circ c$
	- ▶ *^h* is a convex function with Lipschitz constant *^L^h*
	- ▶ *^c* is a *^C* ¹ mapping, gradient has Lipschitz constant *L^c*

 $\rho = L_h L_c$

$$
f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|
$$

- ▶ Composite functions $f = h \circ c$
	- ▶ *^h* is a convex function with Lipschitz constant *^L^h*
	- ▶ *^c* is a *^C* ¹ mapping, gradient has Lipschitz constant *L^c*

 $\rho = L_h L_c$

$$
f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|
$$

▶ Covariance matrix estimation similar, but $b_i \approx a_i^{\top} X X^{\top} a_i$

- ▶ Composite functions $f = h \circ c$
	- ▶ *^h* is a convex function with Lipschitz constant *^L^h*
	- ▶ *^c* is a *^C* ¹ mapping, gradient has Lipschitz constant *L^c*

 $\rho = L_h L_c$

$$
f(x) = \frac{1}{m} \sum_{i=1}^{m} |\langle a_i, x \rangle^2 - b_i|
$$

▶ Covariance matrix estimation similar, but $b_i \approx a_i^{\top} X X^{\top} a_i$

In both cases ρ is independent of dimension and *m*

Explicit subdifferential structure of
$$
F^{\hat{x}}(\cdot) = f(\cdot) + \frac{\rho}{2} || \cdot -\hat{x} ||^2
$$

Exploit subdifferential structure of $F^{\hat{\chi}}(\cdot) = f(\cdot) + \frac{\rho}{2} || \cdot -\hat{\chi} ||^2$

▶ $\partial f(\cdot) + \rho(\cdot - \hat{x})$ is the subdifferential of the convex function $F^{\hat{x}}(\cdot)$

Exploit subdifferential structure of $F^{\hat{\chi}}(\cdot) = f(\cdot) + \frac{\rho}{2} || \cdot -\hat{\chi} ||^2$

▶ $\partial f(\cdot) + \rho(\cdot - \hat{x})$ is the subdifferential of the convex function $F^{\hat{x}}(\cdot)$ \blacktriangleright \Longrightarrow substract $\rho(\cdot - \hat{x})$ from $\partial_{\varepsilon} F^{\hat{x}}(\cdot)$

Exploit subdifferential structure of $F^{\hat{\chi}}(\cdot) = f(\cdot) + \frac{\rho}{2} || \cdot -\hat{\chi} ||^2$

▶ $\partial f(\cdot) + \rho(\cdot - \hat{x})$ is the subdifferential of the convex function $F^{\hat{x}}(\cdot)$ \blacktriangleright \Longrightarrow substract $\rho(\cdot - \hat{x})$ from $\partial_{\varepsilon} F^{\hat{x}}(\cdot)$

we define

$$
\partial_{\varepsilon}^{\hat{x}} f(\cdot) := \partial_{\varepsilon} \mathcal{F}^{\hat{x}}(\cdot) - \rho(\cdot - \hat{x})
$$

Exploit subdifferential structure of $F^{\hat{\chi}}(\cdot) = f(\cdot) + \frac{\rho}{2} || \cdot -\hat{\chi} ||^2$

▶ $\partial f(\cdot) + \rho(\cdot - \hat{x})$ is the subdifferential of the convex function $F^{\hat{x}}(\cdot)$ \blacktriangleright \Longrightarrow substract $\rho(\cdot - \hat{x})$ from $\partial_{\varepsilon} F^{\hat{x}}(\cdot)$

we define

$$
\partial_{\varepsilon}^{\hat{x}} f(\cdot) := \partial_{\varepsilon} \mathcal{F}^{\hat{x}}(\cdot) - \rho(\cdot - \hat{x})
$$

Exploit subdifferential structure of $F^{\hat{\chi}}(\cdot) = f(\cdot) + \frac{\rho}{2} || \cdot -\hat{\chi} ||^2$

▶ $\partial f(\cdot) + \rho(\cdot - \hat{x})$ is the subdifferential of the convex function $F^{\hat{x}}(\cdot)$ \blacktriangleright \Longrightarrow substract $\rho(\cdot - \hat{x})$ from $\partial_{\varepsilon} F^{\hat{x}}(\cdot)$

we define

$$
\partial_{\varepsilon}^{\hat{x}} f(\cdot) := \partial_{\varepsilon} \mathcal{F}^{\hat{x}}(\cdot) - \rho(\cdot - \hat{x})
$$

Exploit subdifferential structure of $F^{\hat{\chi}}(\cdot) = f(\cdot) + \frac{\rho}{2} || \cdot -\hat{\chi} ||^2$

▶ $\partial f(\cdot) + \rho(\cdot - \hat{x})$ is the subdifferential of the convex function $F^{\hat{x}}(\cdot)$ \blacktriangleright \Longrightarrow substract $\rho(\cdot - \hat{x})$ from $\partial_{\varepsilon} F^{\hat{x}}(\cdot)$

we define

$$
\partial_{\varepsilon}^{\hat{x}} f(\cdot) := \partial_{\varepsilon} \mathcal{F}^{\hat{x}}(\cdot) - \rho(\cdot - \hat{x})
$$

this localized continuous approximate subdifferential inherits **all** the Convex Analysis calculus for ε -subdifferentials!

Exploit subdifferential structure of $F^{\hat{\chi}}(\cdot) = f(\cdot) + \frac{\rho}{2} || \cdot -\hat{\chi} ||^2$

▶ $\partial f(\cdot) + \rho(\cdot - \hat{x})$ is the subdifferential of the convex function $F^{\hat{x}}(\cdot)$ \blacktriangleright \Longrightarrow substract $\rho(\cdot - \hat{x})$ from $\partial_{\varepsilon} F^{\hat{x}}(\cdot)$

we define

$$
\partial_{\varepsilon}^{\hat{x}} f(\cdot) := \partial_{\varepsilon} \mathcal{F}^{\hat{x}}(\cdot) - \rho(\cdot - \hat{x})
$$

this localized continuous approximate subdifferential inherits **all** the Convex Analysis calculus for ε -subdifferentials! for instance,... $20/25$

Extension of JPP's Variational principle (Prop.1.1)

(III) For a closed proper ρ**-weakly** convex function *f*, ▶ given $u_0^* \in \overline{\partial_{\varepsilon}^{u_1}}$ ε *f*(*u*0)

Extension of JPP's Variational principle (Prop.1.1)

(III) For a closed proper ρ**-weakly** convex function *f*, ▶ given $u_0^* \in \overline{\partial_{\varepsilon}^{u_1}}$ ε *f*(*u*0) ▶ there exist x_{ε} ∈ \mathbb{R}^n , x_{ε}^* ∈ $\partial f(x_{\varepsilon})$ and γ ∈ [-1, 1], such that $||x_{\varepsilon}-u_0||+\frac{1}{\sqrt{2}}$ $\frac{1}{\overline{\varepsilon}}$ $\langle u_0^{\star}$ $\left|\frac{\partial}{\partial x}, x_{\varepsilon} - u_0\right| \leq \sqrt{\varepsilon}$ $\|\mathbf{x}_{\varepsilon}^{\star}-(1+\gamma)\mathbf{u}_{0}^{\star}$ $\|\vec{\zeta}\| \leq \sqrt{\varepsilon}$ $|\langle x_{\varepsilon}^* - u_0^*$ $\vert \zeta_0^{\star}, X_{\mathcal{E}} - U_0 \rangle \vert \leq \varepsilon$ $|\langle x_{\mathcal{E}}^{\star}$ $\left|\frac{\partial}{\partial \varepsilon}, x_{\varepsilon} - u_0\right| \leq 2\varepsilon$

Extension of JPP's Variational principle (Prop.1.1)

(III) For a closed proper ρ**-weakly** convex function *f*, ▶ given $u_0^* \in \overline{\partial_{\varepsilon}^{u_1}}$ ε *f*(*u*0) ▶ there exist x_{ε} ∈ \mathbb{R}^n , x_{ε}^* ∈ $\partial f(x_{\varepsilon})$ and γ ∈ [-1, 1], such that $||x_{\varepsilon}-u_0||+\frac{1}{\sqrt{2}}$ $\frac{1}{\overline{\varepsilon}}$ $\langle u_0^{\star}$ $\left|\frac{\partial}{\partial x}, x_{\varepsilon} - u_0\right| \leq \sqrt{\varepsilon}$ $\|\mathbf{x}_{\varepsilon}^{\star}-(1+\gamma)\mathbf{u}_{0}^{\star}$ $\|\vec{\zeta}\| \leq \sqrt{\varepsilon}$ $|\langle x_{\varepsilon}^* - u_0^*$ $\vert \zeta_0^{\star}, X_{\mathcal{E}} - U_0 \rangle \vert \leq \varepsilon$ $|\langle x_{\mathcal{E}}^{\star}$ $\left|\frac{\partial}{\partial \varepsilon}, x_{\varepsilon} - u_0\right| \leq 2\varepsilon$ $|f(x_{\varepsilon})-f(u_0)| \leq (2+\rho)\varepsilon + \frac{3\rho}{2}$ 2 $||u_0 - u_1||^2$

More results

- **Extension of JPP's Corollary 1.2** For a closed proper ρ**-weakly** convex function *f*,
	- ▶ given *^u*⁰ ∈ *dom f*
	- ▶ there exists a sequence $(x_k, x_k^* \in \partial f(x_k))$ *k* such that

$$
x_k \rightarrow u_0
$$

$$
f(x_k) \rightarrow f(u_0)
$$

$$
\langle x_k^*, x_k - u_0 \rangle \rightarrow 0.
$$

Any cluster point of $\{x_k^{\star}\}$ satisfying these properties, whenever it exists, belongs to $\partial f(u_0)$.

More results

- **Extension of JPP's Corollary 1.2** For a closed proper ρ**-weakly** convex function *f*,
	- ▶ given *^u*⁰ ∈ *dom f*
	- ▶ there exists a sequence $(x_k, x_k^* \in \partial f(x_k))$ *k* such that

$$
x_k \rightarrow u_0
$$

$$
f(x_k) \rightarrow f(u_0)
$$

$$
\langle x_k^*, x_k - u_0 \rangle \rightarrow 0.
$$

Any cluster point of $\{x_k^{\star}\}$ satisfying these properties, whenever it exists, belongs to $\partial f(u_0)$.

- Algorithmic optimality certificate checks if for $x^*_\varepsilon \in \partial_\varepsilon^{x_\varepsilon} f(x_\varepsilon), \|x^*_\varepsilon\|$ and ε are small

$$
\text{Since } \partial_{\varepsilon}^{x_{\varepsilon}} f(x_{\varepsilon}) = \partial_{\varepsilon} F^{x_{\varepsilon}}(x_{\varepsilon})
$$
\n
$$
f(y) + \frac{\rho}{2} \|y - x_{\varepsilon}\|^2 \ge f(x_{\varepsilon}) + \langle x_{\varepsilon}^*, y - x_{\varepsilon} \rangle - \varepsilon
$$

ε-subgradient descent schemes for w.c. optimization *a la `* S. M. Robinson.

"Linear convergence of epsilon-subgradient descent methods for a class of convex functions"

Mathematical Programming 86.1 (1999)

Sequences

$$
x_{k+1} = x_k - t_k d_k \quad \text{for} \quad d_k \in \partial_{\varepsilon_k}^{x_k} f(x_k) \quad \text{and } t_k \in [t_{\min}, t_{\max}]
$$

ε-subgradient descent schemes for w.c. optimization *a la `* S. M. Robinson.

"Linear convergence of epsilon-subgradient descent methods for a class of convex functions"

Mathematical Programming 86.1 (1999)

Sequences

 $x_{k+1} = x_k - t_k d_k$ for $d_k \in \partial_{\mathcal{E}_k}^{x_k}$ $e_{k}^{x_{k}}f(x_{k})$ and $t_{k} \in [t_{\min}, t_{\max}]$ satisfying a descent condition

$$
f(x_{k+1}) \leq f(x_k) - m\left(\varepsilon_k + t_k \|d_k\|^2\right)
$$

ε-subgradient descent schemes for w.c. optimization *a la `* S. M. Robinson.

"Linear convergence of epsilon-subgradient descent methods for a class of convex functions"

Mathematical Programming 86.1 (1999)

Sequences

⊂ **nonconvex prox and redistributed bundle serious steps**

 $x_{k+1} = x_k - t_k d_k$ for $d_k \in \partial_{\mathcal{E}_k}^{x_k}$ $e_{k}^{x_{k}}f(x_{k})$ and $t_{k} \in [t_{\min}, t_{\max}]$

satisfying a descent condition

$$
f(x_{k+1}) \leq f(x_k) - m\left(\varepsilon_k + t_k \|d_k\|^2\right)
$$

ε-subgradient descent schemes for w.c. optimization *a la `* S. M. Robinson.

"Linear convergence of epsilon-subgradient descent methods for a class of convex functions"

Mathematical Programming 86.1 (1999)

Sequences

⊂ **nonconvex prox and redistributed bundle serious steps**

$$
x_{k+1} = x_k - t_k d_k \quad \text{for} \quad d_k \in \partial_{\varepsilon_k}^{x_k} f(x_k) \quad \text{and } t_k \in [t_{\min}, t_{\max}]
$$

satisfying a descent condition

$$
f(x_{k+1}) \leq f(x_k) - m\left(\varepsilon_k + t_k \|d_k\|^2\right)
$$

can be shown to be

globally convergent

with linear speed, if KL condition and proper separation of isocost

\blacktriangleright faster algorithms for w.c. optimization

 \triangleright stable VU-decompositions exploiting ε -subdifferential structure

- \blacktriangleright faster algorithms for w.c. optimization
	- \triangleright stable VU-decompositions exploiting ε -subdifferential structure
- ▶ For composite functions $f = h \circ c$,

$$
\partial f(x) = c'(x)^{\top} \partial h(C) \text{ for } C = c(x)
$$

- \blacktriangleright faster algorithms for w.c. optimization
	- \triangleright stable VU-decompositions exploiting ε -subdifferential structure
- ▶ For composite functions $f = h \circ c$,

$$
\partial f(x) = c'(x)^{\top} \partial h(C) \text{ for } C = c(x)
$$

► compare $\partial_{\varepsilon}^{x} f(x)$ with the (global) approximate subdifferential

$$
\partial_{\varepsilon} f(x) := c'(x)^{\top} \partial_{\varepsilon} h(C)
$$

- \blacktriangleright faster algorithms for w.c. optimization
	- \triangleright stable VU-decompositions exploiting ε -subdifferential structure
- ▶ For composite functions $f = h \circ c$,

$$
\partial f(x) = c'(x)^{\top} \partial h(C) \text{ for } C = c(x)
$$

► compare $\partial_{\varepsilon}^{x} f(x)$ with the (global) approximate subdifferential

$$
\partial_{\varepsilon} f(x) := c'(x)^{\top} \partial_{\varepsilon} h(C)
$$

\blacktriangleright theory

- ▶ continuous time proximal methods, ODE's
- ▶ results from Convex Analysis ^ε−subdifferential

- \triangleright faster algorithms for w.c. optimization
	- \triangleright stable VU-decompositions exploiting ε -subdifferential structure
- ▶ For composite functions $f = h \circ c$,

$$
\partial f(x) = c'(x)^{\top} \partial h(C) \text{ for } C = c(x)
$$

► compare $\partial_{\varepsilon}^{x} f(x)$ with the (global) approximate subdifferential

$$
\partial_{\varepsilon} f(x) := c'(x)^{\top} \partial_{\varepsilon} h(C)
$$

\blacktriangleright theory

- ▶ continuous time proximal methods, ODE's
- ▶ results from Convex Analysis ^ε−subdifferential

The end: merci et joyeux anniversaire