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The problem:

(OC)
minimize ϕ(x(·)),

s.t. ẋ ∈ F (t, x),
(x(0), x(T )) ∈ S,

Here:
ϕ is a function on the space of Rn-valued continuous functions

F is a set-valued mapping into Rn

S is a closed subset of R2n.

We are interested in necessary conditions for a given absolutely
continuous x(·) to be a local minimum in the problem in one or
another sense.
Specifically, we shall consider local minima in the W 1,1 topology
and in the topology of uniform convergence.



Standard optimal control problem with state constraints is a
particular case of the stated problem. Namely, the problem

minimize `(x(0), x(T )),
s.t. ẋ ∈ F (t, x),

(x(0), x(T )) ∈ S,
g(t, x(t)) ≤ 0, ∀ t

is reduced to (OC) if we set

ϕ(x(·)) = max{`(x(0), x(T ))− `(x(0), x(T )),max
t
g(t, x(t))}



Subdifferentials and normal cones in Rn

Let f be an lsc extended-real-valued function on Rn finite at x.

Proximal subdifferential: y ∈ ∂pf(x) if there are ε > 0 and
k > 0 such that

f(x+ h)− f(x) ≥ 〈y, h〉 − k|h|2, whenever |h| < ε.

Limiting subdifferential: y ∈ ∂f(x) if there are xk → x and
yk → y such that yk ∈ ∂pf(xk).

Limiting normal cone: given S ⊂ Rn and x ∈ S; then
N(S, x) := ∂iS(x), where iS is the indicator of S (the function
equal to zero on S and +∞ outside of S).

Clarke’s normal cone: Nc(S, x) = cl convN(S, x).

Clarke’s generalized gradient:
∂cf(x) = {y : (y,−1) ∈ Nc(epi f, (x, f(x)))}

NB: ∂f(x) is a bounded set iff f is Lipschitz near x in which
case ∂cf(x) = conv ∂f(x).



Subdifferentials and normal cones in Banach spaces

Let X be a separable Banach space and f a function on X
which is Lipschitz in a neighborhood of x

Dini–Hadamard subdifferential of f at x:

∂−f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f(x, h), ∀ h ∈ X},

where d−f(x;h) = lim inft↘0 t
−1(f(x+ th)− f(x))

Limiting subdifferential: x∗ ∈ ∂f(x) if there are xk → x in the
norm topology and x∗k → x∗ in the weak∗-topology such that
x∗k ∈ ∂−f(xk).

Clarke’s generalized gradient: ∂cf(x) = cl conv ∂f(x).

Limiting and Clarke normal cones: given an S ⊂ X and x ∈ S,

N(S, x) =
⋃
λ≥0

λ∂d(x, S), Nc(S, x) =
⋃
λ≥0

λ∂cd(x, S)

where d(u, S) is the distance from u to S.



General assumptions:

(H1) ϕ is is Lipschitz in a C-neighborhood of x(·)

(H2) S ⊂ Rn ×Rn is a closed set;

(H3) F is a measurable mapping with respect to the σ-algebra
generated by products of Lebesgue measurable subsets of [0, T ]
and Borel subsets of Rn,

(H4) Graph F (t, ·) is a closed set in R2n for almost every t.



Statements of main theorems: W 1,1-minimum

Let U(t) be the set of u ∈ F (t, x(t)) such that the inequality

|d(y, F (t, x))− d(y, F (t, x′))| ≤ k|x− x′| (∗)

holds for all x, x′ ∈ B(x(t), ε), y ∈ B(u, δ) with some positive
k, ε, δ (depending on u and t).

NB: This simply means that U(t) is the set of u ∈ F (t, x(t))
such that F (t, ·) has the Aubin (pseudo-Lipschitz) property at
(x(t), u).

To state the theorem we also need the following additional
assumption:

(H5) there are measurable δ(t) > 0, ξ ∈ (0, 1), ε > 0 and
summable k(t) > 0 such that for almost every t the inequality
(∗) holds with u = ẋ(t), k = k(t) and δ = δ(t), along with
F (t, x) ∩B(ẋ(t), ξδ(t)) 6= ∅ for almost every t.



Theorem 1. Assume (H1)-(H5). If x(·) ∈W 1,1 is a W 1,1-local
minimum in (OC), then there are λ ≥ 0, an Rn-valued
function p(t) of bounded variation and a nonnegative measure
ν ∈ λ∂ϕ(x(·)) such that λ+ |p(t)| 6= 0 and the following relations
(i)–(iv) are satisfied with some Rn-valued summable q(t):

(i) p(t) +
∫ T
t q(τ)dτ +

∫ T
t ν(dτ) = const;

(ii) q(t) ∈ conv {q : (q, p(t)) ∈ N(Graph F (t, ·), (x(t), ẋ(t)))}

(iii) (p(0),−p(T )) ∈ (ν{0}, ν{T}) +N(S, (x(0), x(T )));

(iv) 〈p(t), ẋ(t)〉 ≥ 〈p(t), u〉, ∀ u ∈ U(t) a.e. on [0, T ].

Remarks. 1. If ϕ(x(·)) = `(x(0), x(T )), then (i) reduces to
ṗ(t) = q(t) and (iii) can be transformed to

(p(0),−p(T )) ∈ λ∂`(x(0), x(T )) +N(S, (x(0), x(T )))

2. Conditions (i)-(iii) are necessary for the weak minimum
(with respect to the norm W 1,∞-topology).
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Comments. 1. The problem was originally studied by Clarke
in 1975 with ϕ(x(·)) = `(x(0), x(T )), F with convex and
bounded values and fully Lipschitz in x, that is such that
F (t, x) ⊂ r(t)B, and F (t, x) ⊂ F (t, x′) + c(t)B, for all
x, x′ ∈ B(x(t), ε) (with some summable k(t), c(t) and ε > 0).
Clearly, in this case U(t) = F (t, x(t)). The adjoint inclusion
that appeared in Clarke’s paper had the form

(ṗ(t), p(t)) ∈ Nc(Graph F (t, ·), (x(t), ẋ(t)))

and the transversalty condition also involved Clarke’s normal
cone



2. The "partially convexified" adjoint inclusion (ii) and
transversality condition with limiting normal were introduced
by Smirnov in 1991 (for the same type of F as in Clarke’s 1975
paper) and by Loewen and Rockafellar in 1994 for a class of F
with unbounded, but still convex, values, satisfying a certain
"integrably sub-Lipschitz" condition again implying that
U(t) = F (t, x(t)).

3. Convexity assumption on the values of F was somewhat
weakened by Mordukhovich in 1995 (under otherwise very
strong assumptions on F ) and fully removed in 1997 in papers
by Ioffe and Vinter–Zheng.

4. Finally, Clarke in 2005 extended the theorem to F satisfying
a certain "pseudo-Lipschitz condition of radius R(t)" in which
U(t) appeared to be equal to F (t, x(t)) ∩B(ẋ(t), R(t)).



Necessary conditions for a strong minimum

Assume that there are a summable positive-valued k(·), and
positive β and ε such that

(H6) the function x→ d(y, F (t, x)) is (k(t) + β|y|)-Lipschitz on
B(x(t), ε) for almost all t;

(H7) for all N > 0 and all x ∈ B(x(t), ε)

(convF (t, x))∩B(ẋ(t), N) ⊂ conv (F (t, x)∩B(ẋ(t), k(t) +βN)).

Let further Y (t, p) = {y ∈ convF (t, x(t)) : 〈p, y〉 = 〈p, ẋ(t)〉}

and P (t) = N(convF (t, x(t)), ẋ(t)).

(H8) for almost every t the inclusion Y (t, p) ⊂ k(t)B holds
whenever p ∈ P (t).
Set H(t, x, p) = sup{〈p, y〉 : y ∈ F (t, x)} and let x(·) be a
feasible trajectory in the problem. We say that x(·) is an
H-normal trajectory if there is no p(·) 6= 0 such that

(p(0),−p(T )) ∈ N(S, (x(0), x(T ))); (−ṗ(t), ẋ(t)) ∈ ∂cH(t, x(t), p(t)) a.e.



Theorem 2. Assume (H1)-(H4) and (H6)- (H8). Let x(·) be a
local minimum in (OC) in the topology of uniform convergence.
Then there are λ ≥ 0, Rn-valued function p(·) of bounded
variation a nonnegative measure ν ∈ λ∂ϕ(x(·)) such that
λ+ |p(t)| 6= 0 and the relations (i)–(iii) below are satisfied with
some Rn-valued summable q(t):

(i) p(t) +
∫ T

t
(q(s)ds+ ν(ds)) = const,

(ii) (p(0),−p(T )− ν({T}) ∈ N(S, (x(0), x(T ))),

(iii) (−q(t), ẋ(t)) ∈ ∂cH(t, ·, ·)(x(t), p(t)) a.e.

Moreover, if x(·) is H-normal, then λ > 0 and (iii) can be
replaced by the "partially convexified" Hamiltonian inclusion

−q(t) ∈ conv {w : (w, ẋ(t)) ∈ ∂H(t, ·, ·)(x(t), p(t)}.



Comments. Developments of the Hamiltonian theory were
more or less parallel to the studies associated with the
Euler-Lagrange approach. A version of Theorem 2 for fully
Lipschitz F with convex and bounded values was obtained by
Clarke in 1976 and boundedness and Lipschitz conditions were
weakened in the mentioned 1994 work of Loewen and
Rockafellar. The partially convexified Hamiltonian condition for
problems with convex-valued F was established in papers by
Rockafellar (1996) and Ioffe (1997). But the convexity
assumption on the values of F was dropped only in a 2014
paper by Vinter, also for bounded-valued F .

So Theorem 2 seems to be the first result containing
Hamiltonian adjoint inclusions for problems with non-convex
and unbounded F .



About the proofs.

The proofs of both theorems are based on reduction of the
problem to one or a sequence of generalized problems of Bolza:

minimize ψ(x(·)) +
∫ T

0
L(t, x(t), ẋ(t))dt

with, generally, extended real valued ψ and integrand L.

Necessary conditions for minima in such problems under very
general assumptions will shortly appear in a paper to be
published soon in Serdica Math. Journal (in the issue dedicated
to the memory of Asen Dontchev).

Here I shall only be able to briefly describe the constructions of
the Bolza functionals in the proofs of both theorems. They are
actually very different.



Theorem 1. Recall that U(t) is the set of u ∈ F (t, x(t)) such
that (with some positive k, ε, δ) the inequality

|d(y, F (t, x))− d(y, F (t, x′))| ≤ k|x− x′| (∗)
holds for x, x′ ∈ B(x(t), ε), y ∈ B(u, δ).
We shall consider all possible triples σ = (k, ε, δ). Fix such a σ
and let Vσ(t) be the collection of u ∈ F (t, x(t)) such that
d(y, F (t, ·)) is k-Lipschitz on B(x(t), ε) if |y − u| < δ.
Let further ∆σ = {t : k(t) ≤ k} with k(t) from (H5). We define
the integrand Lσ(t, x, y) equal to d(y, F (t, x)) (with slight
modification) either on the δ-neighborhood of Uσ(t) if t ∈ ∆σ or
on the δ(t)-neighborhood of x(t) otherwise (with δ(t) from
(H5)) and consider Bolza functionals

Jmσ(x(·)) = max{ϕ(x(·)) +m−2, d((x(0), x(T )), S)}

+
∫ T

0
Lσ(t, x(t), ẋ(t))dt,

Clearly Jmσ(x(·)) = m−2, so applying Ekeland’s principle, we
shall get a slightly modified Bolza functional that attains
minimum at a certain xmδ(·)→ x(·) as m→∞.



Theorem 2. Here the reduction is based on the following
observation:

Optimality alternative Let Y be a metric space, M ⊂ Y
and y ∈M . Let further f(y) be a function defined and
Lipschitz in a neighborhood of y and attaining at y a local
minimum on M . Let finally, ψ(y) be a nonnegative lower
semicontinuous function equal to zero at y. Then the following
alternative holds:
– either there is a λ > 0 such that λf + ψ has an unconditional
local minimum at y;
– or for any sequence of positive numbers (ηm)→ 0 there are
zm 6∈M converging to x such that ϕ(zm) < ηmd(zm,M).
In particular, if ϕ(y) = d(y,M), then f(y) +Kd(y,M) ≥ f(y)
for all y of a neighborhood of y, provided K is greater than the
Lipschitz constant of f .



To apply the alternative to the problem, it is convenient to
assume that x(t) ≡ 0, k(t) ≡ 1 and to work with x(·) ∈W 1,2.
Let X be the collection of trajectories of the inclusion
ẋ ∈ F (t, x).

Take a sufficiently large r > 0 and let Xr stand for the
collection of elements of X such that |x(t)| ≤ ε for all t and
|ẋ(t)| ≤ r almost everywhere. Let finally M be the subset of Xr

containing those x(·) which satisfy (x(0), x(T )) ∈ S. We
consider Xr with the topology of uniform convergence and,
applying the optimality alternative, conclude that

(a) either there is a λ > 0 such that zero is an unconditional
strong local minimum of λψ(x(·)) + d((x(0), x(T )), S) on Xr;

(b) or there is a sequence on (zm(·)) ⊂ Xr uniformly converging
to zero and such that d((zm(0), zm(T )), S) < m−2dC(zm(·),M).



In the first case the functional is Lipschitz and we can find a
N > 0 such that

J(x(·)) = λψ(x(·))+d((x(0), x(T )), S)+N
∫ T

0
L(t, x(t), ẋ(t))dt ≥ J(0) = 0

if ‖x(·)‖C < ε0 and ‖ẋ(t)‖ ≤ r a.e..

So J is the desired Bolza functional in this case.



The second case is more complicated. Let ψm(x(·)) be the
function equal to

d((x(0), x(T )), S) +
∫ T

0
((|ẋ(t)| − r)+)2dt+m−1‖x(·)− zm(·)‖C .

if x(·) ∈ X and to +∞ otherwise. Then

ψm(zm(·)) ≤ m−2d(zm(·),M).

We can apply Stegall’s variational principle to ψm, and find an
am ∈ Rn and a wm(·) ∈ L2 such that |am| < m−2,
‖wm(·)‖2 < m−2d(zm(·),M) and the function

Jm(x(·)) = ψm(x(·))+〈am, x(0)−zm(0)〉+
∫ T

0
〈wm(t), ẋ(t)−żm(t)〉dt

attains its minimum on W 1,2 at some xm(·) ∈ X.



It remains to note that Jm is a Bolza functional because setting

Lm(t, x, y) =
{

((‖y‖ − r)+)2 + 〈wm(t), y〉, if y ∈ F (t, x);
+∞, otherwise,

and

ϕm(x(·)) = d(x(0), x(T ), S)+〈am, x(0)−zm(0)〉+m−1‖x(·)−zm(·)‖C ,

we get

Jm(x(·)) = ϕm(x(·)) +
∫ T

0
Lm(t, x(t), ẋ(t))dt



THANK YOU


