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Abstract. In this talk, we will investigate geometrical characterizations of two concepts of differ-
entiabilty:

(1) Clarke regularity of subanalytic sets;
(2) Strictly Hadamard differentiabilty of epi-Lipschitzian sets.

In a finite dimensional space X, we will show that for a closed subanalytic subset S, the Clarke
tangential regularity of S at x̄ ∈ S is equivalent to the coincidence of the Clarke’s tangent cone to S
at x̄ with the set

L(S, x̄) :=

{
ċ+(0) ∈ X : c : [0, 1] −→ S is Lipschitz, c(0) = x̄

}
.

In a Banach space, we will show that for an epi-Lipschitzian set S at x̄ in the boundary of S, the
following assertions are equivalent:

• S is strictly Hadamard differentiable at x̄;
• the Clarke tangent cone T (S, x̄) to S at x̄ contains a closed hyperplane;
• the Clarke tangent cone T (bdryS, x̄) to bdryS at x̄ is a closed hyperplane.

Moreover when X is of finite dimension, Y is a Banach space and g : X 7→ Y is a locally Lipschitz
mapping around x̄, we show that g is strictly Hadamard differentiable at x̄ IFF T (graph g, (x̄, g(x̄)))
is isomorphic to X IFF the set-valued mapping x ⇒ K(graph g, (x, g(x))) is continuous at x̄ and
K(graph g, (x̄, g(x̄))) is isomorphic to X, where K(A, a) denotes the contingent cone to a set A at
a ∈ A.
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